{"title":"基于树结构稀疏模式的高维信号快速压缩感知","authors":"Chun-Shien Lu, Wei-Jie Liang","doi":"10.1109/ChinaSIP.2014.6889342","DOIUrl":null,"url":null,"abstract":"Compressive sensing of multi-dimensional signals (tensors) only receives limited attention. Separable sensing and proper sparsity pattern play two key roles for compressive sensing of tensors to be feasible and efficient. In view of inherent characteristic of 2D images and 3D videos, we propose the use of tree-structure sparsity pattern in tensor compressive sensing and develop a multiway tree-structure sparsity pattern OMP algorithm in this paper. Experimental results demonstrate the effectiveness of our method in terms of recovery quality and speed.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast compressive sensing of high-dimensional signals with tree-structure sparsity pattern\",\"authors\":\"Chun-Shien Lu, Wei-Jie Liang\",\"doi\":\"10.1109/ChinaSIP.2014.6889342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing of multi-dimensional signals (tensors) only receives limited attention. Separable sensing and proper sparsity pattern play two key roles for compressive sensing of tensors to be feasible and efficient. In view of inherent characteristic of 2D images and 3D videos, we propose the use of tree-structure sparsity pattern in tensor compressive sensing and develop a multiway tree-structure sparsity pattern OMP algorithm in this paper. Experimental results demonstrate the effectiveness of our method in terms of recovery quality and speed.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast compressive sensing of high-dimensional signals with tree-structure sparsity pattern
Compressive sensing of multi-dimensional signals (tensors) only receives limited attention. Separable sensing and proper sparsity pattern play two key roles for compressive sensing of tensors to be feasible and efficient. In view of inherent characteristic of 2D images and 3D videos, we propose the use of tree-structure sparsity pattern in tensor compressive sensing and develop a multiway tree-structure sparsity pattern OMP algorithm in this paper. Experimental results demonstrate the effectiveness of our method in terms of recovery quality and speed.