基于树结构稀疏模式的高维信号快速压缩感知

Chun-Shien Lu, Wei-Jie Liang
{"title":"基于树结构稀疏模式的高维信号快速压缩感知","authors":"Chun-Shien Lu, Wei-Jie Liang","doi":"10.1109/ChinaSIP.2014.6889342","DOIUrl":null,"url":null,"abstract":"Compressive sensing of multi-dimensional signals (tensors) only receives limited attention. Separable sensing and proper sparsity pattern play two key roles for compressive sensing of tensors to be feasible and efficient. In view of inherent characteristic of 2D images and 3D videos, we propose the use of tree-structure sparsity pattern in tensor compressive sensing and develop a multiway tree-structure sparsity pattern OMP algorithm in this paper. Experimental results demonstrate the effectiveness of our method in terms of recovery quality and speed.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Fast compressive sensing of high-dimensional signals with tree-structure sparsity pattern\",\"authors\":\"Chun-Shien Lu, Wei-Jie Liang\",\"doi\":\"10.1109/ChinaSIP.2014.6889342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing of multi-dimensional signals (tensors) only receives limited attention. Separable sensing and proper sparsity pattern play two key roles for compressive sensing of tensors to be feasible and efficient. In view of inherent characteristic of 2D images and 3D videos, we propose the use of tree-structure sparsity pattern in tensor compressive sensing and develop a multiway tree-structure sparsity pattern OMP algorithm in this paper. Experimental results demonstrate the effectiveness of our method in terms of recovery quality and speed.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

多维信号(张量)的压缩感知只受到有限的关注。可分离感知和适当的稀疏模式是张量压缩感知可行性和有效性的关键。针对二维图像和三维视频的固有特点,本文提出了在张量压缩感知中使用树结构稀疏模式,并开发了一种多路树结构稀疏模式OMP算法。实验结果表明,该方法在恢复质量和速度方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast compressive sensing of high-dimensional signals with tree-structure sparsity pattern
Compressive sensing of multi-dimensional signals (tensors) only receives limited attention. Separable sensing and proper sparsity pattern play two key roles for compressive sensing of tensors to be feasible and efficient. In view of inherent characteristic of 2D images and 3D videos, we propose the use of tree-structure sparsity pattern in tensor compressive sensing and develop a multiway tree-structure sparsity pattern OMP algorithm in this paper. Experimental results demonstrate the effectiveness of our method in terms of recovery quality and speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信