用于智能手机应用的色素皮肤病变图像的自动分割

I. Pirnog, I. Marcu, C. Oprea
{"title":"用于智能手机应用的色素皮肤病变图像的自动分割","authors":"I. Pirnog, I. Marcu, C. Oprea","doi":"10.1109/SMICND.2019.8923938","DOIUrl":null,"url":null,"abstract":"Automated prescreening of pigmented skin lesions is crucial for melanoma early detection and cure solution identification. All computer aided methods and applications use image segmentation for pigmentary lesion extraction. State of the art segmentation methods offer good results for macroscopic skin lesion images captured standard cameras. The aim of this paper is to address the pigmented skin lesion segmentation issue for images captured in uncontrolled environment using smartphone cameras.","PeriodicalId":151985,"journal":{"name":"2019 International Semiconductor Conference (CAS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated Segmentation of Pigmented Skin Lesions Images for Smartphone Applications\",\"authors\":\"I. Pirnog, I. Marcu, C. Oprea\",\"doi\":\"10.1109/SMICND.2019.8923938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated prescreening of pigmented skin lesions is crucial for melanoma early detection and cure solution identification. All computer aided methods and applications use image segmentation for pigmentary lesion extraction. State of the art segmentation methods offer good results for macroscopic skin lesion images captured standard cameras. The aim of this paper is to address the pigmented skin lesion segmentation issue for images captured in uncontrolled environment using smartphone cameras.\",\"PeriodicalId\":151985,\"journal\":{\"name\":\"2019 International Semiconductor Conference (CAS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Semiconductor Conference (CAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMICND.2019.8923938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Semiconductor Conference (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMICND.2019.8923938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

色素皮肤病变的自动预筛选对于黑色素瘤的早期发现和治疗方案的确定至关重要。所有计算机辅助方法和应用都使用图像分割来提取色素病变。目前最先进的分割方法为标准摄像机捕获的宏观皮肤病变图像提供了良好的效果。本文的目的是解决使用智能手机相机在不受控制的环境中捕获的图像的色素皮肤病变分割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Segmentation of Pigmented Skin Lesions Images for Smartphone Applications
Automated prescreening of pigmented skin lesions is crucial for melanoma early detection and cure solution identification. All computer aided methods and applications use image segmentation for pigmentary lesion extraction. State of the art segmentation methods offer good results for macroscopic skin lesion images captured standard cameras. The aim of this paper is to address the pigmented skin lesion segmentation issue for images captured in uncontrolled environment using smartphone cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信