基于人工神经网络的车辆速度预测

A. Fedorova, Viktar Beliautsou, I. Anikin
{"title":"基于人工神经网络的车辆速度预测","authors":"A. Fedorova, Viktar Beliautsou, I. Anikin","doi":"10.1109/RusAutoCon49822.2020.9208089","DOIUrl":null,"url":null,"abstract":"We propose an approach for the vehicle’s speed prediction based on artificial neural networks. Different types of artificial neural networks were considered including MLP and RNN. A complex urban route in Kazan city was chosen for data gathering and making experiments. We demonstrated that it is possible to obtain sufficient accuracy for speed prediction based on limited source data. We got the prediction accuracy as 99.6% for the first future second and 94% for the tenth future second. Simple RNN showed better results for given data. We can use the suggested approach for designing intellectual automatic transmission systems and other intelligent transport systems applications.","PeriodicalId":101834,"journal":{"name":"2020 International Russian Automation Conference (RusAutoCon)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prediction Vehicle’s Speed with Using Artificial Neural Networks\",\"authors\":\"A. Fedorova, Viktar Beliautsou, I. Anikin\",\"doi\":\"10.1109/RusAutoCon49822.2020.9208089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach for the vehicle’s speed prediction based on artificial neural networks. Different types of artificial neural networks were considered including MLP and RNN. A complex urban route in Kazan city was chosen for data gathering and making experiments. We demonstrated that it is possible to obtain sufficient accuracy for speed prediction based on limited source data. We got the prediction accuracy as 99.6% for the first future second and 94% for the tenth future second. Simple RNN showed better results for given data. We can use the suggested approach for designing intellectual automatic transmission systems and other intelligent transport systems applications.\",\"PeriodicalId\":101834,\"journal\":{\"name\":\"2020 International Russian Automation Conference (RusAutoCon)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Russian Automation Conference (RusAutoCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RusAutoCon49822.2020.9208089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon49822.2020.9208089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于人工神经网络的车辆速度预测方法。考虑了不同类型的人工神经网络,包括MLP和RNN。选取喀山市一条复杂的城市路线进行数据采集和实验。我们证明了基于有限源数据的速度预测有可能获得足够的精度。我们得到的预测精度为99.6%的第一未来秒和94%的第十未来秒。对于给定的数据,简单RNN显示出更好的结果。我们可以将该方法用于设计智能自动变速器系统和其他智能交通系统的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction Vehicle’s Speed with Using Artificial Neural Networks
We propose an approach for the vehicle’s speed prediction based on artificial neural networks. Different types of artificial neural networks were considered including MLP and RNN. A complex urban route in Kazan city was chosen for data gathering and making experiments. We demonstrated that it is possible to obtain sufficient accuracy for speed prediction based on limited source data. We got the prediction accuracy as 99.6% for the first future second and 94% for the tenth future second. Simple RNN showed better results for given data. We can use the suggested approach for designing intellectual automatic transmission systems and other intelligent transport systems applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信