Alfonso Martinez, J. Scarlett, M. Dalai, A. G. Fàbregas
{"title":"随机编码边界鞍点逼近的复积分方法","authors":"Alfonso Martinez, J. Scarlett, M. Dalai, A. G. Fàbregas","doi":"10.1109/ISWCS.2014.6933428","DOIUrl":null,"url":null,"abstract":"This paper derives a saddlepoint approximation for the random-coding bound to the error probability of channel coding by using complex-integration techniques. The approximation is given by a sum of two terms: one with Gallager's exponent, and a second one with Arimoto's strong converse exponent (above capacity) or the sphere-packing exponent (below the critical rate).","PeriodicalId":431852,"journal":{"name":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A complex-integration approach to the saddlepoint approximation for random-coding bounds\",\"authors\":\"Alfonso Martinez, J. Scarlett, M. Dalai, A. G. Fàbregas\",\"doi\":\"10.1109/ISWCS.2014.6933428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper derives a saddlepoint approximation for the random-coding bound to the error probability of channel coding by using complex-integration techniques. The approximation is given by a sum of two terms: one with Gallager's exponent, and a second one with Arimoto's strong converse exponent (above capacity) or the sphere-packing exponent (below the critical rate).\",\"PeriodicalId\":431852,\"journal\":{\"name\":\"2014 11th International Symposium on Wireless Communications Systems (ISWCS)\",\"volume\":\"356 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Symposium on Wireless Communications Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS.2014.6933428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2014.6933428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A complex-integration approach to the saddlepoint approximation for random-coding bounds
This paper derives a saddlepoint approximation for the random-coding bound to the error probability of channel coding by using complex-integration techniques. The approximation is given by a sum of two terms: one with Gallager's exponent, and a second one with Arimoto's strong converse exponent (above capacity) or the sphere-packing exponent (below the critical rate).