J. Buchmüller, Wolfgang Jentner, Dirk Streeb, D. Keim
{"title":"ODIX:出发地-目的地数据的快速假设测试系统IEEE VAST挑战时空图分析卓越奖","authors":"J. Buchmüller, Wolfgang Jentner, Dirk Streeb, D. Keim","doi":"10.1109/VAST.2017.8585686","DOIUrl":null,"url":null,"abstract":"In this paper, we present our solution to the VAST Challenge 2017 Mini Challenge 1. We discuss challenges posed by data set and tasks and introduce ODIX, a custom rapid hypotheses testing system tailored to origin-destination data as provided by the challenge. We show findings made with ODIX and illustrate how we apply sequential pattern mining to explore common traffic patterns.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"103 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ODIX: A Rapid Hypotheses Testing System for Origin-Destination Data IEEE VAST Challenge Award for Excellence in Spatio-temporal Graph Analytics\",\"authors\":\"J. Buchmüller, Wolfgang Jentner, Dirk Streeb, D. Keim\",\"doi\":\"10.1109/VAST.2017.8585686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our solution to the VAST Challenge 2017 Mini Challenge 1. We discuss challenges posed by data set and tasks and introduce ODIX, a custom rapid hypotheses testing system tailored to origin-destination data as provided by the challenge. We show findings made with ODIX and illustrate how we apply sequential pattern mining to explore common traffic patterns.\",\"PeriodicalId\":149607,\"journal\":{\"name\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"volume\":\"103 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2017.8585686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ODIX: A Rapid Hypotheses Testing System for Origin-Destination Data IEEE VAST Challenge Award for Excellence in Spatio-temporal Graph Analytics
In this paper, we present our solution to the VAST Challenge 2017 Mini Challenge 1. We discuss challenges posed by data set and tasks and introduce ODIX, a custom rapid hypotheses testing system tailored to origin-destination data as provided by the challenge. We show findings made with ODIX and illustrate how we apply sequential pattern mining to explore common traffic patterns.