J. Baxter, Antonio Calà Lesina, J. Guay, A. Weck, P. Berini, L. Ramunno
{"title":"等离子体中的深度学习与逆设计","authors":"J. Baxter, Antonio Calà Lesina, J. Guay, A. Weck, P. Berini, L. Ramunno","doi":"10.1109/NUSOD.2019.8806817","DOIUrl":null,"url":null,"abstract":"Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"258263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning and Inverse Design in Plasmonic\",\"authors\":\"J. Baxter, Antonio Calà Lesina, J. Guay, A. Weck, P. Berini, L. Ramunno\",\"doi\":\"10.1109/NUSOD.2019.8806817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.\",\"PeriodicalId\":369769,\"journal\":{\"name\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"258263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2019.8806817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8806817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.