等离子体中的深度学习与逆设计

J. Baxter, Antonio Calà Lesina, J. Guay, A. Weck, P. Berini, L. Ramunno
{"title":"等离子体中的深度学习与逆设计","authors":"J. Baxter, Antonio Calà Lesina, J. Guay, A. Weck, P. Berini, L. Ramunno","doi":"10.1109/NUSOD.2019.8806817","DOIUrl":null,"url":null,"abstract":"Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.","PeriodicalId":369769,"journal":{"name":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"258263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Learning and Inverse Design in Plasmonic\",\"authors\":\"J. Baxter, Antonio Calà Lesina, J. Guay, A. Weck, P. Berini, L. Ramunno\",\"doi\":\"10.1109/NUSOD.2019.8806817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.\",\"PeriodicalId\":369769,\"journal\":{\"name\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"258263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2019.8806817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2019.8806817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

激光脉冲可以通过在贵金属表面诱导纳米粒子而使其上色。这些颜色与激光参数和纳米粒子的几何形状有关。我们将深度学习应用于直接预测激光参数集或纳米粒子分布的颜色。提出了一种基于深度学习的反设计新方法,在给定所需颜色的情况下,检索适当的激光参数或纳米颗粒分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning and Inverse Design in Plasmonic
Laser pulses can colour noble metals by inducing nanoparticles on their surface. The colours are linked to laser parameters and nanoparticles geometry. We apply deep learning to the direct prediction of colours from a laser parameter set or a nanoparticle particle distribution. A new method for inverse design via deep learning is also proposed to retrieve the appropriate laser parameters or nanoparticle distribution given the desired colour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信