二维可分分母滤波器的一种辨识算法

J. Ramos
{"title":"二维可分分母滤波器的一种辨识算法","authors":"J. Ramos","doi":"10.1109/SOUTHC.1995.516070","DOIUrl":null,"url":null,"abstract":"Subspace algorithms that rely on robust numerical linear algebra are becoming increasingly important in areas such as array processing, mobile telephones, system identification, etc. The class of linear subspace system identification algorithms has already been shown to be successful for industrial as well as environmental applications. These subspace identification algorithms use input/output data directly contrary to other classical state-space identification algorithms that use Markov parameters. The advantages of the subspace algorithms are the automatic structure identification (system order), geometrical insights (notions of angle between subspaces), and the fact that they rely on robust numerical procedures (singular value decomposition). the authors extend the linear subspace identification algorithm to the class of 2-D balanced state space models, having separable horizontal/vertical structure.","PeriodicalId":341055,"journal":{"name":"Proceedings of Southcon '95","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An identification algorithm for the 2-D separable-in-denominator filter\",\"authors\":\"J. Ramos\",\"doi\":\"10.1109/SOUTHC.1995.516070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace algorithms that rely on robust numerical linear algebra are becoming increasingly important in areas such as array processing, mobile telephones, system identification, etc. The class of linear subspace system identification algorithms has already been shown to be successful for industrial as well as environmental applications. These subspace identification algorithms use input/output data directly contrary to other classical state-space identification algorithms that use Markov parameters. The advantages of the subspace algorithms are the automatic structure identification (system order), geometrical insights (notions of angle between subspaces), and the fact that they rely on robust numerical procedures (singular value decomposition). the authors extend the linear subspace identification algorithm to the class of 2-D balanced state space models, having separable horizontal/vertical structure.\",\"PeriodicalId\":341055,\"journal\":{\"name\":\"Proceedings of Southcon '95\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Southcon '95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOUTHC.1995.516070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Southcon '95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOUTHC.1995.516070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于鲁棒数值线性代数的子空间算法在阵列处理、移动电话、系统识别等领域变得越来越重要。一类线性子空间系统识别算法已经被证明是成功的工业以及环境应用。这些子空间识别算法使用输入/输出数据,与使用马尔可夫参数的其他经典状态空间识别算法直接相反。子空间算法的优点是自动结构识别(系统顺序),几何洞察力(子空间之间的角度概念),以及它们依赖于鲁棒数值过程(奇异值分解)的事实。将线性子空间识别算法推广到具有水平/垂直可分结构的二维平衡状态空间模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An identification algorithm for the 2-D separable-in-denominator filter
Subspace algorithms that rely on robust numerical linear algebra are becoming increasingly important in areas such as array processing, mobile telephones, system identification, etc. The class of linear subspace system identification algorithms has already been shown to be successful for industrial as well as environmental applications. These subspace identification algorithms use input/output data directly contrary to other classical state-space identification algorithms that use Markov parameters. The advantages of the subspace algorithms are the automatic structure identification (system order), geometrical insights (notions of angle between subspaces), and the fact that they rely on robust numerical procedures (singular value decomposition). the authors extend the linear subspace identification algorithm to the class of 2-D balanced state space models, having separable horizontal/vertical structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信