{"title":"一种利用自由形式笔记来预测客户流失的技术","authors":"Gregory W. Ramsey, S. Bapna","doi":"10.4018/ijcmam.2014010101","DOIUrl":null,"url":null,"abstract":"As healthcare costs rise, hospitals are seeking ways to improve operations. This paper examines the usefulness of free-form notes to solve a classification problem commonly associated with customer churn. The authors show that classifiers which incorporate free-form notes, using natural language processing techniques, are up to 9% more accurate than classifiers that are solely developed using structured data. The authors suggest that hospitals and chronic disease management clinics can use structured data and free-form notes from electronic health records to predict which patients are likely to cease receiving care from their facilities. Classification tools for predicting patient churn are of interest to hospital administrators; such information can aid in resource planning and facilitate smoother handoffs between care providers.","PeriodicalId":162417,"journal":{"name":"Int. J. Comput. Model. Algorithms Medicine","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Technique to Exploit Free-Form Notes to Predict Customer Churn\",\"authors\":\"Gregory W. Ramsey, S. Bapna\",\"doi\":\"10.4018/ijcmam.2014010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As healthcare costs rise, hospitals are seeking ways to improve operations. This paper examines the usefulness of free-form notes to solve a classification problem commonly associated with customer churn. The authors show that classifiers which incorporate free-form notes, using natural language processing techniques, are up to 9% more accurate than classifiers that are solely developed using structured data. The authors suggest that hospitals and chronic disease management clinics can use structured data and free-form notes from electronic health records to predict which patients are likely to cease receiving care from their facilities. Classification tools for predicting patient churn are of interest to hospital administrators; such information can aid in resource planning and facilitate smoother handoffs between care providers.\",\"PeriodicalId\":162417,\"journal\":{\"name\":\"Int. J. Comput. Model. Algorithms Medicine\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Model. Algorithms Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcmam.2014010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Model. Algorithms Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcmam.2014010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Technique to Exploit Free-Form Notes to Predict Customer Churn
As healthcare costs rise, hospitals are seeking ways to improve operations. This paper examines the usefulness of free-form notes to solve a classification problem commonly associated with customer churn. The authors show that classifiers which incorporate free-form notes, using natural language processing techniques, are up to 9% more accurate than classifiers that are solely developed using structured data. The authors suggest that hospitals and chronic disease management clinics can use structured data and free-form notes from electronic health records to predict which patients are likely to cease receiving care from their facilities. Classification tools for predicting patient churn are of interest to hospital administrators; such information can aid in resource planning and facilitate smoother handoffs between care providers.