独立于平台的硬件资源利用自动监控和排序

Shamoona Imtiaz, Jakob Danielsson, M. Behnam, Gabriele Capannini, Jan Carlson, Marcus Jägemar
{"title":"独立于平台的硬件资源利用自动监控和排序","authors":"Shamoona Imtiaz, Jakob Danielsson, M. Behnam, Gabriele Capannini, Jan Carlson, Marcus Jägemar","doi":"10.1109/ETFA45728.2021.9613506","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss a method for automatic monitoring of hardware and software events using performance monitoring counters. Computer applications are complex and utilize a broad spectra of the available hardware resources, where multiple performance counters can be of significant interest to understand. The number of performance counters that can be captured simultaneously is, however, small due to hardware limitations in most modern computers. We suggest a platform independent solution to automatically retrieve hardware events from an underlying architecture. Moreover, to mitigate the hardware limitations we propose a mechanism that pinpoints the most relevant performance counters for an application's performance. In our proposal, we utilize the Pearson's correlation coefficient to rank the most relevant performance counters and filter out those that are most relevant and ignore the rest.","PeriodicalId":312498,"journal":{"name":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Platform-Independent Monitoring and Ranking of Hardware Resource Utilization\",\"authors\":\"Shamoona Imtiaz, Jakob Danielsson, M. Behnam, Gabriele Capannini, Jan Carlson, Marcus Jägemar\",\"doi\":\"10.1109/ETFA45728.2021.9613506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss a method for automatic monitoring of hardware and software events using performance monitoring counters. Computer applications are complex and utilize a broad spectra of the available hardware resources, where multiple performance counters can be of significant interest to understand. The number of performance counters that can be captured simultaneously is, however, small due to hardware limitations in most modern computers. We suggest a platform independent solution to automatically retrieve hardware events from an underlying architecture. Moreover, to mitigate the hardware limitations we propose a mechanism that pinpoints the most relevant performance counters for an application's performance. In our proposal, we utilize the Pearson's correlation coefficient to rank the most relevant performance counters and filter out those that are most relevant and ignore the rest.\",\"PeriodicalId\":312498,\"journal\":{\"name\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA45728.2021.9613506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA45728.2021.9613506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们讨论了一种使用性能监视计数器自动监视硬件和软件事件的方法。计算机应用程序是复杂的,并且利用了广泛的可用硬件资源,其中多个性能计数器可能非常值得理解。然而,由于大多数现代计算机的硬件限制,可以同时捕获的性能计数器的数量很少。我们建议使用独立于平台的解决方案,从底层架构中自动检索硬件事件。此外,为了减轻硬件限制,我们提出了一种机制,可以为应用程序的性能确定最相关的性能计数器。在我们的建议中,我们利用Pearson的相关系数对最相关的性能计数器进行排名,并过滤掉那些最相关的,忽略其余的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Platform-Independent Monitoring and Ranking of Hardware Resource Utilization
In this paper, we discuss a method for automatic monitoring of hardware and software events using performance monitoring counters. Computer applications are complex and utilize a broad spectra of the available hardware resources, where multiple performance counters can be of significant interest to understand. The number of performance counters that can be captured simultaneously is, however, small due to hardware limitations in most modern computers. We suggest a platform independent solution to automatically retrieve hardware events from an underlying architecture. Moreover, to mitigate the hardware limitations we propose a mechanism that pinpoints the most relevant performance counters for an application's performance. In our proposal, we utilize the Pearson's correlation coefficient to rank the most relevant performance counters and filter out those that are most relevant and ignore the rest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信