R. G. Ramírez-Chavarría, C. Sánchez-Pérez, D. Matatagui
{"title":"用松弛时间分布法分析生物组织阻抗谱测量","authors":"R. G. Ramírez-Chavarría, C. Sánchez-Pérez, D. Matatagui","doi":"10.5220/0006253902240228","DOIUrl":null,"url":null,"abstract":"This work proposes a method for analysing electrical impedance spectroscopy (EIS) measurements of biological tissue in the range of 100 Hz to 1 MHz by means of the distribution of relaxation times (DRT) to evaluate and study the different relaxation time constant involved in electrical response. We numerically analyse different configurations of RC circuits and compare the electrical response in time domain by DRT with that of classical EIS representation in frequency domain as Bode plots. Experimental validation of the technique using RC circuits, gives an error of less than 1% for the EIS measurement system with respect to theoretical calculation. We present preliminary measurements for WISTAR rat tissue samples of spleen, lung and kidney fixed in formaldehyde solution at 3.8% founding a more detailed occurrence of relaxation mechanism that could provide useful information about the structure and composition of biological tissues in","PeriodicalId":357085,"journal":{"name":"International Conference on Biomedical Electronics and Devices","volume":"429 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Impedance Spectroscopy Measurements of Biological Tissue using the Distribution of Relaxation Times Method\",\"authors\":\"R. G. Ramírez-Chavarría, C. Sánchez-Pérez, D. Matatagui\",\"doi\":\"10.5220/0006253902240228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a method for analysing electrical impedance spectroscopy (EIS) measurements of biological tissue in the range of 100 Hz to 1 MHz by means of the distribution of relaxation times (DRT) to evaluate and study the different relaxation time constant involved in electrical response. We numerically analyse different configurations of RC circuits and compare the electrical response in time domain by DRT with that of classical EIS representation in frequency domain as Bode plots. Experimental validation of the technique using RC circuits, gives an error of less than 1% for the EIS measurement system with respect to theoretical calculation. We present preliminary measurements for WISTAR rat tissue samples of spleen, lung and kidney fixed in formaldehyde solution at 3.8% founding a more detailed occurrence of relaxation mechanism that could provide useful information about the structure and composition of biological tissues in\",\"PeriodicalId\":357085,\"journal\":{\"name\":\"International Conference on Biomedical Electronics and Devices\",\"volume\":\"429 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Biomedical Electronics and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0006253902240228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Biomedical Electronics and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006253902240228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Impedance Spectroscopy Measurements of Biological Tissue using the Distribution of Relaxation Times Method
This work proposes a method for analysing electrical impedance spectroscopy (EIS) measurements of biological tissue in the range of 100 Hz to 1 MHz by means of the distribution of relaxation times (DRT) to evaluate and study the different relaxation time constant involved in electrical response. We numerically analyse different configurations of RC circuits and compare the electrical response in time domain by DRT with that of classical EIS representation in frequency domain as Bode plots. Experimental validation of the technique using RC circuits, gives an error of less than 1% for the EIS measurement system with respect to theoretical calculation. We present preliminary measurements for WISTAR rat tissue samples of spleen, lung and kidney fixed in formaldehyde solution at 3.8% founding a more detailed occurrence of relaxation mechanism that could provide useful information about the structure and composition of biological tissues in