数据验证和数据质量评估

F. Clemens-Meyer, M. Lepot, F. Blumensaat, Dominik Leutnant, G. Gruber
{"title":"数据验证和数据质量评估","authors":"F. Clemens-Meyer, M. Lepot, F. Blumensaat, Dominik Leutnant, G. Gruber","doi":"10.2166/9781789060119_0327","DOIUrl":null,"url":null,"abstract":"\n Once data have been recorded, data validation procedures have to be conducted to assess the quality of the data, i.e. give a confidence grade. Furthermore, gaps may occur in time series and, depending on the purposes, these can be given values by application of e.g. interpolation. Since both aspects are strongly correlated, this chapter gives an overview on the main data validation and data curation/imputation methods. Instead of offering exhaustive details on existing methods, this chapter aims at providing concepts for most popular techniques, a discussion of their advantages and disadvantages in the light of different cases of application, and some thoughts on potential impacts of the choices that must be made. Despite involving mathematical methods, data validation remains a largely subjective process: every data user must be aware of those subjectivities.","PeriodicalId":185223,"journal":{"name":"Metrology in Urban Drainage and Stormwater Management: Plug and Pray","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data validation and data quality assessment\",\"authors\":\"F. Clemens-Meyer, M. Lepot, F. Blumensaat, Dominik Leutnant, G. Gruber\",\"doi\":\"10.2166/9781789060119_0327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Once data have been recorded, data validation procedures have to be conducted to assess the quality of the data, i.e. give a confidence grade. Furthermore, gaps may occur in time series and, depending on the purposes, these can be given values by application of e.g. interpolation. Since both aspects are strongly correlated, this chapter gives an overview on the main data validation and data curation/imputation methods. Instead of offering exhaustive details on existing methods, this chapter aims at providing concepts for most popular techniques, a discussion of their advantages and disadvantages in the light of different cases of application, and some thoughts on potential impacts of the choices that must be made. Despite involving mathematical methods, data validation remains a largely subjective process: every data user must be aware of those subjectivities.\",\"PeriodicalId\":185223,\"journal\":{\"name\":\"Metrology in Urban Drainage and Stormwater Management: Plug and Pray\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrology in Urban Drainage and Stormwater Management: Plug and Pray\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/9781789060119_0327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology in Urban Drainage and Stormwater Management: Plug and Pray","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/9781789060119_0327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

记录数据后,必须进行数据验证程序,以评估数据的质量,即给出置信度等级。此外,间隙可能出现在时间序列中,根据不同的目的,这些间隙可以通过应用例如插值来给定值。由于这两个方面是紧密相关的,本章概述了主要的数据验证和数据管理/插入方法。本章的目的不是提供现有方法的详尽细节,而是为大多数流行的技术提供概念,根据不同的应用案例讨论它们的优缺点,并对必须做出的选择的潜在影响进行一些思考。尽管涉及数学方法,但数据验证仍然是一个很大程度上主观的过程:每个数据用户都必须意识到这些主观性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data validation and data quality assessment
Once data have been recorded, data validation procedures have to be conducted to assess the quality of the data, i.e. give a confidence grade. Furthermore, gaps may occur in time series and, depending on the purposes, these can be given values by application of e.g. interpolation. Since both aspects are strongly correlated, this chapter gives an overview on the main data validation and data curation/imputation methods. Instead of offering exhaustive details on existing methods, this chapter aims at providing concepts for most popular techniques, a discussion of their advantages and disadvantages in the light of different cases of application, and some thoughts on potential impacts of the choices that must be made. Despite involving mathematical methods, data validation remains a largely subjective process: every data user must be aware of those subjectivities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信