基于可重构数据流计算的数字脉冲硅神经元模型快速仿真

Will X. Y. Li, Shridhar Choudhary, R. Cheung, Takeshi Matsumoto, M. Fujita
{"title":"基于可重构数据流计算的数字脉冲硅神经元模型快速仿真","authors":"Will X. Y. Li, Shridhar Choudhary, R. Cheung, Takeshi Matsumoto, M. Fujita","doi":"10.1109/FPT.2013.6718420","DOIUrl":null,"url":null,"abstract":"A new simulation scheme of the Digital Spiking Silicon Neuron (DSSN) model is proposed. This scheme is based on the reconfigurable dataflow computing paradigm and targets the Maxeler MaxWorkstation. Compared to the previous implementation of the DSSN network, the new scheme has the virtues of better flexibility and better programmability. More importantly, computing with dataflow cores takes good advantage of the intrinsic parallelism of the reconfigurable hardware and better pipelining is achievable. The proposed scheme has good potential of conducting large-scale and fast simulation of the DSSN-model-based network which is pivotal to future neuroscience research.","PeriodicalId":344469,"journal":{"name":"2013 International Conference on Field-Programmable Technology (FPT)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast simulation of Digital Spiking Silicon Neuron model employing reconfigurable dataflow computing\",\"authors\":\"Will X. Y. Li, Shridhar Choudhary, R. Cheung, Takeshi Matsumoto, M. Fujita\",\"doi\":\"10.1109/FPT.2013.6718420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new simulation scheme of the Digital Spiking Silicon Neuron (DSSN) model is proposed. This scheme is based on the reconfigurable dataflow computing paradigm and targets the Maxeler MaxWorkstation. Compared to the previous implementation of the DSSN network, the new scheme has the virtues of better flexibility and better programmability. More importantly, computing with dataflow cores takes good advantage of the intrinsic parallelism of the reconfigurable hardware and better pipelining is achievable. The proposed scheme has good potential of conducting large-scale and fast simulation of the DSSN-model-based network which is pivotal to future neuroscience research.\",\"PeriodicalId\":344469,\"journal\":{\"name\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2013.6718420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2013.6718420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的数字脉冲硅神经元(dsn)模型仿真方案。该方案基于可重构数据流计算范式,以Maxeler MaxWorkstation为目标。与以往的dsn网络实现方案相比,新方案具有更好的灵活性和可编程性。更重要的是,数据流核计算充分利用了可重构硬件固有的并行性,可以实现更好的流水线化。该方案具有对基于dssn模型的神经网络进行大规模、快速仿真的良好潜力,对未来神经科学研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast simulation of Digital Spiking Silicon Neuron model employing reconfigurable dataflow computing
A new simulation scheme of the Digital Spiking Silicon Neuron (DSSN) model is proposed. This scheme is based on the reconfigurable dataflow computing paradigm and targets the Maxeler MaxWorkstation. Compared to the previous implementation of the DSSN network, the new scheme has the virtues of better flexibility and better programmability. More importantly, computing with dataflow cores takes good advantage of the intrinsic parallelism of the reconfigurable hardware and better pipelining is achievable. The proposed scheme has good potential of conducting large-scale and fast simulation of the DSSN-model-based network which is pivotal to future neuroscience research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信