视网膜图像兴趣区域的无损压缩

Jenni Hukkanen, P. Astola, I. Tabus
{"title":"视网膜图像兴趣区域的无损压缩","authors":"Jenni Hukkanen, P. Astola, I. Tabus","doi":"10.1109/EUVIP.2014.7018394","DOIUrl":null,"url":null,"abstract":"This paper presents a lossless compression method performing separately the compression of the vessels and of the remaining part of eye fundus in retinal images. Retinal images contain valuable information sources for several distinct medical diagnosis tasks, where the features of interest can be e.g. the cotton wool spots in the eye fundus, or the volume of the vessels over concentric circular regions. It is assumed that one of the existent segmentation methods provided the segmentation of the vessels. The proposed compression method transmits losslessly the segmentation image, and then transmits the eye fundus part, or the vessels image, or both, conditional on the vessels segmentation. The independent compression of the two color image segments is performed using a sparse predictive method. Experiments are provided over a database of retinal images containing manual and estimated segmentations. The codelength of encoding the overall image, including the segmentation and the image segments, proves to be better than the codelength for the entire image obtained by JPEG2000 and other publicly available compressors.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lossless compression of regions-of-interest from retinal images\",\"authors\":\"Jenni Hukkanen, P. Astola, I. Tabus\",\"doi\":\"10.1109/EUVIP.2014.7018394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a lossless compression method performing separately the compression of the vessels and of the remaining part of eye fundus in retinal images. Retinal images contain valuable information sources for several distinct medical diagnosis tasks, where the features of interest can be e.g. the cotton wool spots in the eye fundus, or the volume of the vessels over concentric circular regions. It is assumed that one of the existent segmentation methods provided the segmentation of the vessels. The proposed compression method transmits losslessly the segmentation image, and then transmits the eye fundus part, or the vessels image, or both, conditional on the vessels segmentation. The independent compression of the two color image segments is performed using a sparse predictive method. Experiments are provided over a database of retinal images containing manual and estimated segmentations. The codelength of encoding the overall image, including the segmentation and the image segments, proves to be better than the codelength for the entire image obtained by JPEG2000 and other publicly available compressors.\",\"PeriodicalId\":442246,\"journal\":{\"name\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2014.7018394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种无损压缩方法,分别对视网膜图像中的血管和眼底剩余部分进行压缩。视网膜图像包含有价值的信息来源,可用于几种不同的医学诊断任务,其中感兴趣的特征可以是眼底的棉絮斑点,或同心圆形区域上的血管体积。假设现有的一种分割方法提供了血管的分割。所提出的压缩方法对分割图像进行无损传输,然后在血管分割的条件下传输眼底部分或血管图像,或两者兼有。采用稀疏预测方法对两个彩色图像片段进行独立压缩。实验提供了一个数据库的视网膜图像包含手动和估计分割。编码整体图像的码长,包括分割和图像片段,证明比JPEG2000和其他公开可用的压缩器获得的整个图像的码长要好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lossless compression of regions-of-interest from retinal images
This paper presents a lossless compression method performing separately the compression of the vessels and of the remaining part of eye fundus in retinal images. Retinal images contain valuable information sources for several distinct medical diagnosis tasks, where the features of interest can be e.g. the cotton wool spots in the eye fundus, or the volume of the vessels over concentric circular regions. It is assumed that one of the existent segmentation methods provided the segmentation of the vessels. The proposed compression method transmits losslessly the segmentation image, and then transmits the eye fundus part, or the vessels image, or both, conditional on the vessels segmentation. The independent compression of the two color image segments is performed using a sparse predictive method. Experiments are provided over a database of retinal images containing manual and estimated segmentations. The codelength of encoding the overall image, including the segmentation and the image segments, proves to be better than the codelength for the entire image obtained by JPEG2000 and other publicly available compressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信