{"title":"视网膜图像兴趣区域的无损压缩","authors":"Jenni Hukkanen, P. Astola, I. Tabus","doi":"10.1109/EUVIP.2014.7018394","DOIUrl":null,"url":null,"abstract":"This paper presents a lossless compression method performing separately the compression of the vessels and of the remaining part of eye fundus in retinal images. Retinal images contain valuable information sources for several distinct medical diagnosis tasks, where the features of interest can be e.g. the cotton wool spots in the eye fundus, or the volume of the vessels over concentric circular regions. It is assumed that one of the existent segmentation methods provided the segmentation of the vessels. The proposed compression method transmits losslessly the segmentation image, and then transmits the eye fundus part, or the vessels image, or both, conditional on the vessels segmentation. The independent compression of the two color image segments is performed using a sparse predictive method. Experiments are provided over a database of retinal images containing manual and estimated segmentations. The codelength of encoding the overall image, including the segmentation and the image segments, proves to be better than the codelength for the entire image obtained by JPEG2000 and other publicly available compressors.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lossless compression of regions-of-interest from retinal images\",\"authors\":\"Jenni Hukkanen, P. Astola, I. Tabus\",\"doi\":\"10.1109/EUVIP.2014.7018394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a lossless compression method performing separately the compression of the vessels and of the remaining part of eye fundus in retinal images. Retinal images contain valuable information sources for several distinct medical diagnosis tasks, where the features of interest can be e.g. the cotton wool spots in the eye fundus, or the volume of the vessels over concentric circular regions. It is assumed that one of the existent segmentation methods provided the segmentation of the vessels. The proposed compression method transmits losslessly the segmentation image, and then transmits the eye fundus part, or the vessels image, or both, conditional on the vessels segmentation. The independent compression of the two color image segments is performed using a sparse predictive method. Experiments are provided over a database of retinal images containing manual and estimated segmentations. The codelength of encoding the overall image, including the segmentation and the image segments, proves to be better than the codelength for the entire image obtained by JPEG2000 and other publicly available compressors.\",\"PeriodicalId\":442246,\"journal\":{\"name\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2014.7018394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lossless compression of regions-of-interest from retinal images
This paper presents a lossless compression method performing separately the compression of the vessels and of the remaining part of eye fundus in retinal images. Retinal images contain valuable information sources for several distinct medical diagnosis tasks, where the features of interest can be e.g. the cotton wool spots in the eye fundus, or the volume of the vessels over concentric circular regions. It is assumed that one of the existent segmentation methods provided the segmentation of the vessels. The proposed compression method transmits losslessly the segmentation image, and then transmits the eye fundus part, or the vessels image, or both, conditional on the vessels segmentation. The independent compression of the two color image segments is performed using a sparse predictive method. Experiments are provided over a database of retinal images containing manual and estimated segmentations. The codelength of encoding the overall image, including the segmentation and the image segments, proves to be better than the codelength for the entire image obtained by JPEG2000 and other publicly available compressors.