基于环lwe的点阵密文-策略属性加密

Tan Soo Fun, A. Samsudin
{"title":"基于环lwe的点阵密文-策略属性加密","authors":"Tan Soo Fun, A. Samsudin","doi":"10.1109/ISTMET.2015.7359040","DOIUrl":null,"url":null,"abstract":"The recent promising results on the hardness of lattice problems have inspired the construction of several Attribute-based Encryption (ABE) schemes from the quantum resistant perspective. However, these schemes are insufficient enough for supporting real-world applications due to inherent quadratic overhead problem in the use of Learning With Error (LWE). To solve this problem, this paper proposed a Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme from a more lightweight ideal lattice classes- Ring-Learning with Errors (Ring-LWE), that further called as CP-ABER-LWE scheme. Compared to existing R-LWE based ABE scheme, the proposed CP-ABER-LWE is capable to handle a monotone access structure and enjoys collusion resistance properties. We exploited Linear Secret Scheme (LSSS) to express a monotone access structure. For resist to collusion attack, we applied the private key randomization technique to blind the user's private key. The proposed scheme CP-ABER-LWE is further proven to be secure under the Decision Ring-LWEd,q,χ problem in the selective set model.","PeriodicalId":302732,"journal":{"name":"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Lattice Ciphertext-Policy Attribute-Based encryption from ring-LWE\",\"authors\":\"Tan Soo Fun, A. Samsudin\",\"doi\":\"10.1109/ISTMET.2015.7359040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent promising results on the hardness of lattice problems have inspired the construction of several Attribute-based Encryption (ABE) schemes from the quantum resistant perspective. However, these schemes are insufficient enough for supporting real-world applications due to inherent quadratic overhead problem in the use of Learning With Error (LWE). To solve this problem, this paper proposed a Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme from a more lightweight ideal lattice classes- Ring-Learning with Errors (Ring-LWE), that further called as CP-ABER-LWE scheme. Compared to existing R-LWE based ABE scheme, the proposed CP-ABER-LWE is capable to handle a monotone access structure and enjoys collusion resistance properties. We exploited Linear Secret Scheme (LSSS) to express a monotone access structure. For resist to collusion attack, we applied the private key randomization technique to blind the user's private key. The proposed scheme CP-ABER-LWE is further proven to be secure under the Decision Ring-LWEd,q,χ problem in the selective set model.\",\"PeriodicalId\":302732,\"journal\":{\"name\":\"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTMET.2015.7359040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTMET.2015.7359040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

近年来关于晶格问题硬度的一些有希望的结果启发了从量子抵抗的角度构建几种基于属性的加密(ABE)方案。然而,由于在使用误差学习(LWE)时固有的二次开销问题,这些方案不足以支持实际应用。为了解决这一问题,本文提出了一种基于密文策略属性的加密(CP-ABE)方案,该方案基于一种更轻量级的理想格类——带误差环学习(Ring-LWE),该方案进一步称为CP-ABER-LWE方案。与现有基于R-LWE的ABE方案相比,所提出的CP-ABER-LWE方案能够处理单调接入结构,并具有抗合谋特性。我们利用线性秘密方案(LSSS)来表达一个单调的访问结构。为了抵御合谋攻击,我们采用私钥随机化技术对用户的私钥进行盲化。在选择集模型的决策环- lwed,q,χ问题下,进一步证明了所提方案CP-ABER-LWE的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lattice Ciphertext-Policy Attribute-Based encryption from ring-LWE
The recent promising results on the hardness of lattice problems have inspired the construction of several Attribute-based Encryption (ABE) schemes from the quantum resistant perspective. However, these schemes are insufficient enough for supporting real-world applications due to inherent quadratic overhead problem in the use of Learning With Error (LWE). To solve this problem, this paper proposed a Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme from a more lightweight ideal lattice classes- Ring-Learning with Errors (Ring-LWE), that further called as CP-ABER-LWE scheme. Compared to existing R-LWE based ABE scheme, the proposed CP-ABER-LWE is capable to handle a monotone access structure and enjoys collusion resistance properties. We exploited Linear Secret Scheme (LSSS) to express a monotone access structure. For resist to collusion attack, we applied the private key randomization technique to blind the user's private key. The proposed scheme CP-ABER-LWE is further proven to be secure under the Decision Ring-LWEd,q,χ problem in the selective set model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信