显著性算法:在偏微分方程中的应用

R. Bivins, N. Metropolis
{"title":"显著性算法:在偏微分方程中的应用","authors":"R. Bivins, N. Metropolis","doi":"10.1109/ARITH.1975.6156973","DOIUrl":null,"url":null,"abstract":"The methods of significance arithmetic are applied to the numerical solution of a nonlinear partial differential equation. Our approach permits the use of initial values having imprecision considerably greater than that of rounding error; moreover, the intermediate and final quantities are monitored so that at any stage the precision of such quantities is available. An algorithm is found that represents faithfully the solution to a difference equation approximation to Burgers' equation.","PeriodicalId":360742,"journal":{"name":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Significance arithmetic: Application to a partial differential equation\",\"authors\":\"R. Bivins, N. Metropolis\",\"doi\":\"10.1109/ARITH.1975.6156973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methods of significance arithmetic are applied to the numerical solution of a nonlinear partial differential equation. Our approach permits the use of initial values having imprecision considerably greater than that of rounding error; moreover, the intermediate and final quantities are monitored so that at any stage the precision of such quantities is available. An algorithm is found that represents faithfully the solution to a difference equation approximation to Burgers' equation.\",\"PeriodicalId\":360742,\"journal\":{\"name\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1975.6156973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1975.6156973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将显著性算法应用于非线性偏微分方程的数值求解。我们的方法允许使用不精确程度大大大于舍入误差的初始值;此外,对中间和最终数量进行监测,以便在任何阶段都能获得这些数量的精度。找到了一种忠实地表示近似于Burgers方程的差分方程解的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Significance arithmetic: Application to a partial differential equation
The methods of significance arithmetic are applied to the numerical solution of a nonlinear partial differential equation. Our approach permits the use of initial values having imprecision considerably greater than that of rounding error; moreover, the intermediate and final quantities are monitored so that at any stage the precision of such quantities is available. An algorithm is found that represents faithfully the solution to a difference equation approximation to Burgers' equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信