Tarek A. Elarabi, Ahmed Sammoud, A. Abdelgawad, X. Li, M. Bayoumi
{"title":"H.264/AVC交互式编码器的混合小波- DCT帧内预测","authors":"Tarek A. Elarabi, Ahmed Sammoud, A. Abdelgawad, X. Li, M. Bayoumi","doi":"10.1109/ChinaSIP.2014.6889248","DOIUrl":null,"url":null,"abstract":"With the growing usage of mobile video applications and Internet based video services; techniques and algorithms of the current video compression standards face new challenging demands for lower bit-rate and faster processing speed. H.264/AVC video compression standard is widely used and provides state of the art video compression solution, but still needs to address the challenges of high bit-rate and required processing power. In this paper, a low bit-rate compression algorithm is proposed, which introduces a novel approach that use both DCT (Discrete Cosine Transform) and DWT (Discrete Wavelet Transform) for enhancing the Intra-Prediction phase of H.264/AVC standard. The proposed Hybrid Wavelet-DCT (HW-DCT) algorithm modifies the FSF (Full Search Free) algorithm; by adding wavelet-based transformation prior to the Intra-prediction process. The HW-DCT algorithm adds up the advantages of wavelet based compression technique to the speed of the FSF algorithm and creates an Intra-prediction algorithm that guarantees 51% lower bit-rate while maintaining similar visual quality and Peak Signal to Noise Ratio (PSNR) of the original H.264/AVC Intra-prediction algorithm. The JM 18.2 Reference software implementation results have validated the effectiveness of our proposed algorithm and shown a significant improvements in both run-time and bit-rate.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid wavelet - DCT intra prediction for H.264/AVC interactive encoder\",\"authors\":\"Tarek A. Elarabi, Ahmed Sammoud, A. Abdelgawad, X. Li, M. Bayoumi\",\"doi\":\"10.1109/ChinaSIP.2014.6889248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing usage of mobile video applications and Internet based video services; techniques and algorithms of the current video compression standards face new challenging demands for lower bit-rate and faster processing speed. H.264/AVC video compression standard is widely used and provides state of the art video compression solution, but still needs to address the challenges of high bit-rate and required processing power. In this paper, a low bit-rate compression algorithm is proposed, which introduces a novel approach that use both DCT (Discrete Cosine Transform) and DWT (Discrete Wavelet Transform) for enhancing the Intra-Prediction phase of H.264/AVC standard. The proposed Hybrid Wavelet-DCT (HW-DCT) algorithm modifies the FSF (Full Search Free) algorithm; by adding wavelet-based transformation prior to the Intra-prediction process. The HW-DCT algorithm adds up the advantages of wavelet based compression technique to the speed of the FSF algorithm and creates an Intra-prediction algorithm that guarantees 51% lower bit-rate while maintaining similar visual quality and Peak Signal to Noise Ratio (PSNR) of the original H.264/AVC Intra-prediction algorithm. The JM 18.2 Reference software implementation results have validated the effectiveness of our proposed algorithm and shown a significant improvements in both run-time and bit-rate.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid wavelet - DCT intra prediction for H.264/AVC interactive encoder
With the growing usage of mobile video applications and Internet based video services; techniques and algorithms of the current video compression standards face new challenging demands for lower bit-rate and faster processing speed. H.264/AVC video compression standard is widely used and provides state of the art video compression solution, but still needs to address the challenges of high bit-rate and required processing power. In this paper, a low bit-rate compression algorithm is proposed, which introduces a novel approach that use both DCT (Discrete Cosine Transform) and DWT (Discrete Wavelet Transform) for enhancing the Intra-Prediction phase of H.264/AVC standard. The proposed Hybrid Wavelet-DCT (HW-DCT) algorithm modifies the FSF (Full Search Free) algorithm; by adding wavelet-based transformation prior to the Intra-prediction process. The HW-DCT algorithm adds up the advantages of wavelet based compression technique to the speed of the FSF algorithm and creates an Intra-prediction algorithm that guarantees 51% lower bit-rate while maintaining similar visual quality and Peak Signal to Noise Ratio (PSNR) of the original H.264/AVC Intra-prediction algorithm. The JM 18.2 Reference software implementation results have validated the effectiveness of our proposed algorithm and shown a significant improvements in both run-time and bit-rate.