{"title":"忆阻器技术使神经处理器设计成为可能","authors":"Chenchen Liu, Yiran Chen, Hai Helen Li","doi":"10.1109/ICRC.2016.7738693","DOIUrl":null,"url":null,"abstract":"Matrix-vector multiplication is a key computing operation in neural processor design and hence greatly affects the execution efficiency. Memristor crossbar is highly attractive for the implementation of matrix-vector multiplication for its analog storage states, high integration density, and built-in parallel execution. The current deign schemes can be generally divided into two different approaches - “spiking-based” design and “levelbased” design. The performance and robustness of the proposed neural process designs are also evaluated by using the application of digital image recognition. In this work, a heuristic flow including device modeling, circuit design, architecture, and algorithm is studied. The proposed neural processor designs that leverages nano-scale memristor technology are summarize and compared. This work indicates that the spiking neuromorphic engine has a good tolerance in resistive device imperfection, but more vulnerable to the fluctuations in output spike generation. The improved level-based computing engine has a higher computation accuracy with better stability.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neural processor design enabled by memristor technology\",\"authors\":\"Chenchen Liu, Yiran Chen, Hai Helen Li\",\"doi\":\"10.1109/ICRC.2016.7738693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix-vector multiplication is a key computing operation in neural processor design and hence greatly affects the execution efficiency. Memristor crossbar is highly attractive for the implementation of matrix-vector multiplication for its analog storage states, high integration density, and built-in parallel execution. The current deign schemes can be generally divided into two different approaches - “spiking-based” design and “levelbased” design. The performance and robustness of the proposed neural process designs are also evaluated by using the application of digital image recognition. In this work, a heuristic flow including device modeling, circuit design, architecture, and algorithm is studied. The proposed neural processor designs that leverages nano-scale memristor technology are summarize and compared. This work indicates that the spiking neuromorphic engine has a good tolerance in resistive device imperfection, but more vulnerable to the fluctuations in output spike generation. The improved level-based computing engine has a higher computation accuracy with better stability.\",\"PeriodicalId\":387008,\"journal\":{\"name\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2016.7738693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural processor design enabled by memristor technology
Matrix-vector multiplication is a key computing operation in neural processor design and hence greatly affects the execution efficiency. Memristor crossbar is highly attractive for the implementation of matrix-vector multiplication for its analog storage states, high integration density, and built-in parallel execution. The current deign schemes can be generally divided into two different approaches - “spiking-based” design and “levelbased” design. The performance and robustness of the proposed neural process designs are also evaluated by using the application of digital image recognition. In this work, a heuristic flow including device modeling, circuit design, architecture, and algorithm is studied. The proposed neural processor designs that leverages nano-scale memristor technology are summarize and compared. This work indicates that the spiking neuromorphic engine has a good tolerance in resistive device imperfection, but more vulnerable to the fluctuations in output spike generation. The improved level-based computing engine has a higher computation accuracy with better stability.