采用5nm技术实现双泵读写同周期的4.24GHz 128X256 SRAM

Nick Zhang, Young Suk Kim, P. Hsu, Sam-Soo Kim, Derek Tao, H. Liao, Ping-Wei Wang, G. Yeap, Quincy Li, Tsung-Yung Jonathan Chang
{"title":"采用5nm技术实现双泵读写同周期的4.24GHz 128X256 SRAM","authors":"Nick Zhang, Young Suk Kim, P. Hsu, Sam-Soo Kim, Derek Tao, H. Liao, Ping-Wei Wang, G. Yeap, Quincy Li, Tsung-Yung Jonathan Chang","doi":"10.23919/VLSITechnologyandCir57934.2023.10185268","DOIUrl":null,"url":null,"abstract":"A high speed IRIW two port 32Kbit (128×256) SRAM with single port 6T bitcell macro is proposed. A Read-Then-Write (RTW) double pump CLK generation circuit with TRKBL bypassing is proposed to enhance read performance. Double metal scheme is applied to improve signal integrity and overall operating cycle time. A Local Interlock Circuit (LIC) is introduced in Sense-Amp to reduce active power and push Fmax further. The silicon results show that the slow corner wafer was able to achieve 4. 24GHz at 1.0V/100°C in 5nm FinFET technology.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 4.24GHz 128X256 SRAM Operating Double Pump Read Write Same Cycle in 5nm Technology\",\"authors\":\"Nick Zhang, Young Suk Kim, P. Hsu, Sam-Soo Kim, Derek Tao, H. Liao, Ping-Wei Wang, G. Yeap, Quincy Li, Tsung-Yung Jonathan Chang\",\"doi\":\"10.23919/VLSITechnologyandCir57934.2023.10185268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high speed IRIW two port 32Kbit (128×256) SRAM with single port 6T bitcell macro is proposed. A Read-Then-Write (RTW) double pump CLK generation circuit with TRKBL bypassing is proposed to enhance read performance. Double metal scheme is applied to improve signal integrity and overall operating cycle time. A Local Interlock Circuit (LIC) is introduced in Sense-Amp to reduce active power and push Fmax further. The silicon results show that the slow corner wafer was able to achieve 4. 24GHz at 1.0V/100°C in 5nm FinFET technology.\",\"PeriodicalId\":317958,\"journal\":{\"name\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种高速irw双端口32Kbit (128×256) SRAM,具有单端口6T位元宏。为了提高读性能,提出了一种带TRKBL旁路的RTW双泵CLK产生电路。采用双金属方案,提高了信号完整性和整体工作周期时间。在感应放大器中引入了局部联锁电路(LIC),以降低有功功率并进一步提高Fmax。硅的实验结果表明,慢角晶圆可以达到4。24GHz, 1.0V/100°C, 5nm FinFET技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 4.24GHz 128X256 SRAM Operating Double Pump Read Write Same Cycle in 5nm Technology
A high speed IRIW two port 32Kbit (128×256) SRAM with single port 6T bitcell macro is proposed. A Read-Then-Write (RTW) double pump CLK generation circuit with TRKBL bypassing is proposed to enhance read performance. Double metal scheme is applied to improve signal integrity and overall operating cycle time. A Local Interlock Circuit (LIC) is introduced in Sense-Amp to reduce active power and push Fmax further. The silicon results show that the slow corner wafer was able to achieve 4. 24GHz at 1.0V/100°C in 5nm FinFET technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信