移动机器人:对未知室内环境的同步定位和绘图

M. Emharraf, M. Rahmoun, M. Saber, M. Azizi
{"title":"移动机器人:对未知室内环境的同步定位和绘图","authors":"M. Emharraf, M. Rahmoun, M. Saber, M. Azizi","doi":"10.1109/EITECH.2015.7162945","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for unknown indoor environment exploration using a simultaneous localization and mapping system. The approach addresses the problem of unknown indoor environments exploration, based on robot mobile moving and sonar scanning. The measurements given by the localization system (odometry for the test system), update for the robot self-localization. The map building process maintaining two grid maps: (1) map grid models the environment occupancy (OM), (2) map grid memorize the robot trajectory(TM). The use of two grid maps provides an efficacy description and use of the environment information over time. Results in simulation and real robots experiments using random exploration show the fusibility of our approach.","PeriodicalId":405923,"journal":{"name":"2015 International Conference on Electrical and Information Technologies (ICEIT)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mobile robot: Simultaneous localization and mapping of unknown indoor environment\",\"authors\":\"M. Emharraf, M. Rahmoun, M. Saber, M. Azizi\",\"doi\":\"10.1109/EITECH.2015.7162945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for unknown indoor environment exploration using a simultaneous localization and mapping system. The approach addresses the problem of unknown indoor environments exploration, based on robot mobile moving and sonar scanning. The measurements given by the localization system (odometry for the test system), update for the robot self-localization. The map building process maintaining two grid maps: (1) map grid models the environment occupancy (OM), (2) map grid memorize the robot trajectory(TM). The use of two grid maps provides an efficacy description and use of the environment information over time. Results in simulation and real robots experiments using random exploration show the fusibility of our approach.\",\"PeriodicalId\":405923,\"journal\":{\"name\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2015.7162945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2015.7162945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用同步定位和绘图系统进行未知室内环境探测的方法。该方法解决了基于机器人移动和声纳扫描的未知室内环境探测问题。由定位系统给出的测量值(用于测试系统的里程计),更新用于机器人的自定位。地图构建过程维护两个网格地图:(1)地图网格模型环境占用(OM),(2)地图网格记忆机器人轨迹(TM)。两个网格图的使用提供了一段时间内环境信息的功效描述和使用情况。仿真和真实机器人随机探索实验的结果表明了该方法的可融合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile robot: Simultaneous localization and mapping of unknown indoor environment
This paper presents an approach for unknown indoor environment exploration using a simultaneous localization and mapping system. The approach addresses the problem of unknown indoor environments exploration, based on robot mobile moving and sonar scanning. The measurements given by the localization system (odometry for the test system), update for the robot self-localization. The map building process maintaining two grid maps: (1) map grid models the environment occupancy (OM), (2) map grid memorize the robot trajectory(TM). The use of two grid maps provides an efficacy description and use of the environment information over time. Results in simulation and real robots experiments using random exploration show the fusibility of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信