机器学习辅助PECVD沉积氢化硅膜系统的原位传感与检测

Yu-Pu Yang, Hsiao-Han Lo, Wei-Lun Chen, Song-Ho Wang, T. Lu, Hsueh-Er Chang, Peter j. Wang, Walter Lai, Y. Fuh, Tomi T. T. Li
{"title":"机器学习辅助PECVD沉积氢化硅膜系统的原位传感与检测","authors":"Yu-Pu Yang, Hsiao-Han Lo, Wei-Lun Chen, Song-Ho Wang, T. Lu, Hsueh-Er Chang, Peter j. Wang, Walter Lai, Y. Fuh, Tomi T. T. Li","doi":"10.1109/CSTIC52283.2021.9461536","DOIUrl":null,"url":null,"abstract":"Plasma enhanced chemical vapor deposition (PECVD) is commonly known to be used in the field of silicon thin-film solar systems for the application of nanocrystalline silicon (nc-Si:H) film. The chemical deposition is a rather lengthy process, and it is difficult to determine the crystallization and crystalline phase of the thin film prior to X-ray diffraction (XRD) measurements. In this study, we are trying to analyze the spectral data collected by optical emission spectroscopy (OES) to find out there is any correlation between OES data and crystalline status. We used machine learning onto an in-situ detection tool to forecast this correlation. The collected large-scale OES spectral data obtained via principal component analysis (PCA) was used for the prediction of the crystalline phase in films without necessary experiments performed afterwards. Therefore, this method can be applicable to the field of thin film deposition for the detection of properties on thin films.","PeriodicalId":186529,"journal":{"name":"2021 China Semiconductor Technology International Conference (CSTIC)","volume":"77 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Assisted In-Situ Sensing and Detection on System of PECVD Depositing Hydrogenated Silicon Films\",\"authors\":\"Yu-Pu Yang, Hsiao-Han Lo, Wei-Lun Chen, Song-Ho Wang, T. Lu, Hsueh-Er Chang, Peter j. Wang, Walter Lai, Y. Fuh, Tomi T. T. Li\",\"doi\":\"10.1109/CSTIC52283.2021.9461536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasma enhanced chemical vapor deposition (PECVD) is commonly known to be used in the field of silicon thin-film solar systems for the application of nanocrystalline silicon (nc-Si:H) film. The chemical deposition is a rather lengthy process, and it is difficult to determine the crystallization and crystalline phase of the thin film prior to X-ray diffraction (XRD) measurements. In this study, we are trying to analyze the spectral data collected by optical emission spectroscopy (OES) to find out there is any correlation between OES data and crystalline status. We used machine learning onto an in-situ detection tool to forecast this correlation. The collected large-scale OES spectral data obtained via principal component analysis (PCA) was used for the prediction of the crystalline phase in films without necessary experiments performed afterwards. Therefore, this method can be applicable to the field of thin film deposition for the detection of properties on thin films.\",\"PeriodicalId\":186529,\"journal\":{\"name\":\"2021 China Semiconductor Technology International Conference (CSTIC)\",\"volume\":\"77 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 China Semiconductor Technology International Conference (CSTIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSTIC52283.2021.9461536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 China Semiconductor Technology International Conference (CSTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSTIC52283.2021.9461536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

等离子体增强化学气相沉积(PECVD)通常用于硅薄膜太阳能系统领域,用于纳米晶硅(nc-Si:H)薄膜的应用。化学沉积是一个相当漫长的过程,在x射线衍射(XRD)测量之前很难确定薄膜的结晶和晶相。在这项研究中,我们试图分析由光学发射光谱(OES)收集的光谱数据,以发现OES数据与晶体状态之间是否存在相关性。我们在现场检测工具上使用机器学习来预测这种相关性。通过主成分分析(PCA)获得的大尺度OES光谱数据被用于预测薄膜的晶相,而没有进行必要的实验。因此,该方法可以应用于薄膜沉积领域,用于检测薄膜上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Assisted In-Situ Sensing and Detection on System of PECVD Depositing Hydrogenated Silicon Films
Plasma enhanced chemical vapor deposition (PECVD) is commonly known to be used in the field of silicon thin-film solar systems for the application of nanocrystalline silicon (nc-Si:H) film. The chemical deposition is a rather lengthy process, and it is difficult to determine the crystallization and crystalline phase of the thin film prior to X-ray diffraction (XRD) measurements. In this study, we are trying to analyze the spectral data collected by optical emission spectroscopy (OES) to find out there is any correlation between OES data and crystalline status. We used machine learning onto an in-situ detection tool to forecast this correlation. The collected large-scale OES spectral data obtained via principal component analysis (PCA) was used for the prediction of the crystalline phase in films without necessary experiments performed afterwards. Therefore, this method can be applicable to the field of thin film deposition for the detection of properties on thin films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信