基于残块的卷积神经网络检测垂直交通信号

Adrian Javier Alarcon Vargas
{"title":"基于残块的卷积神经网络检测垂直交通信号","authors":"Adrian Javier Alarcon Vargas","doi":"10.55739/fer.v24i24.124","DOIUrl":null,"url":null,"abstract":"El objetivo del presente trabajo es entrenar una red neuronal capaz de detectar la señalización de tránsito vertical y clasificarla usando bloques residuales. La metodología utilizada para el desarrollo de la red neuronal comprende cuatro fases: definición de la red neuronal, entrenamiento, utilización y mantenimiento de la red neuronal. Para el desarrollo de la red neuronal se cuenta con dos datasets, el primero es de origen alemán, consta de 50.000 imágenes y es muy usado para la clasificación de señales de tránsito; y el segundo de origen boliviano, que tiene 9.548 imágenes de carretera. El porcentaje de eficacia de la red neuronal nro. 1 con el dataset GTSRB es alto, obteniendo un valor de 94.36%, además incluye valores altos en el reporte de clasificación, caso contrario sucede con el dataset de Bolivia debido a que el dataset está desbalanceado.","PeriodicalId":138381,"journal":{"name":"FIDES ET RATIO","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detección de la señalización de tránsito vertical con redes neuronales convolucionales basadas en bloques residuales\",\"authors\":\"Adrian Javier Alarcon Vargas\",\"doi\":\"10.55739/fer.v24i24.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El objetivo del presente trabajo es entrenar una red neuronal capaz de detectar la señalización de tránsito vertical y clasificarla usando bloques residuales. La metodología utilizada para el desarrollo de la red neuronal comprende cuatro fases: definición de la red neuronal, entrenamiento, utilización y mantenimiento de la red neuronal. Para el desarrollo de la red neuronal se cuenta con dos datasets, el primero es de origen alemán, consta de 50.000 imágenes y es muy usado para la clasificación de señales de tránsito; y el segundo de origen boliviano, que tiene 9.548 imágenes de carretera. El porcentaje de eficacia de la red neuronal nro. 1 con el dataset GTSRB es alto, obteniendo un valor de 94.36%, además incluye valores altos en el reporte de clasificación, caso contrario sucede con el dataset de Bolivia debido a que el dataset está desbalanceado.\",\"PeriodicalId\":138381,\"journal\":{\"name\":\"FIDES ET RATIO\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FIDES ET RATIO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55739/fer.v24i24.124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FIDES ET RATIO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55739/fer.v24i24.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是训练一个能够检测垂直交通信号的神经网络,并利用残障块对其进行分类。用于开发神经网络的方法包括四个阶段:神经网络的定义、训练、使用和维护。对于神经网络的发展,有两个数据集,第一个来自德国,由5万张图像组成,广泛用于交通信号的分类;第二张来自玻利维亚,有9548张道路图片。nro神经网络的效率百分比。1 GTSRB数据集高,获得94.36%的值,在分类报告中也包括高值,否则玻利维亚数据集发生,因为数据集不平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detección de la señalización de tránsito vertical con redes neuronales convolucionales basadas en bloques residuales
El objetivo del presente trabajo es entrenar una red neuronal capaz de detectar la señalización de tránsito vertical y clasificarla usando bloques residuales. La metodología utilizada para el desarrollo de la red neuronal comprende cuatro fases: definición de la red neuronal, entrenamiento, utilización y mantenimiento de la red neuronal. Para el desarrollo de la red neuronal se cuenta con dos datasets, el primero es de origen alemán, consta de 50.000 imágenes y es muy usado para la clasificación de señales de tránsito; y el segundo de origen boliviano, que tiene 9.548 imágenes de carretera. El porcentaje de eficacia de la red neuronal nro. 1 con el dataset GTSRB es alto, obteniendo un valor de 94.36%, además incluye valores altos en el reporte de clasificación, caso contrario sucede con el dataset de Bolivia debido a que el dataset está desbalanceado.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信