空气污染浓度的对数正态模型研究

P. Bhandari
{"title":"空气污染浓度的对数正态模型研究","authors":"P. Bhandari","doi":"10.3126/bmcjsr.v2i1.42741","DOIUrl":null,"url":null,"abstract":"The Lognormal distribution has been widely used to represent the type of air pollutant concentration distribution. There are different methods to estimate the distribution parameters such as the method of moments, percentiles, maximum likelihood estimation (MLE) and Bayesian method of estimation. In this study, the theoretical distribution Lognormal is used to fit the parent distribution of PM 10 of Putalisadak of Kathmandu, Nepal. Two estimating methods namely method of maximum likelihood and method of moments are used to estimate the parameters of the theoretic distributions.","PeriodicalId":404599,"journal":{"name":"BMC Journal of Scientific Research","volume":"83 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study of Lognormal Model for Air Pollution Concentration\",\"authors\":\"P. Bhandari\",\"doi\":\"10.3126/bmcjsr.v2i1.42741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lognormal distribution has been widely used to represent the type of air pollutant concentration distribution. There are different methods to estimate the distribution parameters such as the method of moments, percentiles, maximum likelihood estimation (MLE) and Bayesian method of estimation. In this study, the theoretical distribution Lognormal is used to fit the parent distribution of PM 10 of Putalisadak of Kathmandu, Nepal. Two estimating methods namely method of maximum likelihood and method of moments are used to estimate the parameters of the theoretic distributions.\",\"PeriodicalId\":404599,\"journal\":{\"name\":\"BMC Journal of Scientific Research\",\"volume\":\"83 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Journal of Scientific Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/bmcjsr.v2i1.42741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Journal of Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/bmcjsr.v2i1.42741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对数正态分布已被广泛用于表示空气污染物浓度分布类型。分布参数的估计方法有矩量法、百分位数法、最大似然估计法和贝叶斯估计法等。本研究采用理论分布对数正态来拟合尼泊尔加德满都Putalisadak地区pm10的母体分布。用极大似然法和矩量法两种估计方法估计理论分布的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Lognormal Model for Air Pollution Concentration
The Lognormal distribution has been widely used to represent the type of air pollutant concentration distribution. There are different methods to estimate the distribution parameters such as the method of moments, percentiles, maximum likelihood estimation (MLE) and Bayesian method of estimation. In this study, the theoretical distribution Lognormal is used to fit the parent distribution of PM 10 of Putalisadak of Kathmandu, Nepal. Two estimating methods namely method of maximum likelihood and method of moments are used to estimate the parameters of the theoretic distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信