单眼图像序列关节轨迹重建的松弛方法

Bo Li, Yuchao Dai, Mingyi He, A. Hengel
{"title":"单眼图像序列关节轨迹重建的松弛方法","authors":"Bo Li, Yuchao Dai, Mingyi He, A. Hengel","doi":"10.1109/ChinaSIP.2014.6889270","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel method for articulated trajectory reconstruction from a monocular image sequence. We propose a relaxation-based objective function, which utilises both smoothness and geometric constraints, posing articulated trajectory reconstruction as a non-linear optimization problem. The main advantage of this approach is that it remains the re-constructive power of the original algorithm, while improving its robustness to the inevitable noise in the data. Furthermore, we present an effective approach to estimating the parameters of our objective function. Experimental results on the CMU motion capture dataset show that our proposed algorithm is effective.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A relaxation method to articulated trajectory reconstruction from monocular image sequence\",\"authors\":\"Bo Li, Yuchao Dai, Mingyi He, A. Hengel\",\"doi\":\"10.1109/ChinaSIP.2014.6889270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel method for articulated trajectory reconstruction from a monocular image sequence. We propose a relaxation-based objective function, which utilises both smoothness and geometric constraints, posing articulated trajectory reconstruction as a non-linear optimization problem. The main advantage of this approach is that it remains the re-constructive power of the original algorithm, while improving its robustness to the inevitable noise in the data. Furthermore, we present an effective approach to estimating the parameters of our objective function. Experimental results on the CMU motion capture dataset show that our proposed algorithm is effective.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于单眼图像序列的关节轨迹重建方法。我们提出了一个基于松弛的目标函数,它利用了平滑性和几何约束,将铰接轨迹重建作为一个非线性优化问题。该方法的主要优点是在保持原始算法的重构能力的同时,提高了对数据中不可避免的噪声的鲁棒性。此外,我们还提出了一种估计目标函数参数的有效方法。在CMU运动捕捉数据集上的实验结果表明,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A relaxation method to articulated trajectory reconstruction from monocular image sequence
In this paper, we present a novel method for articulated trajectory reconstruction from a monocular image sequence. We propose a relaxation-based objective function, which utilises both smoothness and geometric constraints, posing articulated trajectory reconstruction as a non-linear optimization problem. The main advantage of this approach is that it remains the re-constructive power of the original algorithm, while improving its robustness to the inevitable noise in the data. Furthermore, we present an effective approach to estimating the parameters of our objective function. Experimental results on the CMU motion capture dataset show that our proposed algorithm is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信