Dongil Park, C. Park, Yijun Yoo, Hyunmin Do, J. Kyung
{"title":"太阳能电池制造中梁式衬底搬运机器人的动力学分析","authors":"Dongil Park, C. Park, Yijun Yoo, Hyunmin Do, J. Kyung","doi":"10.1109/URAI.2011.6146020","DOIUrl":null,"url":null,"abstract":"In the thin film solar cell production system, it is a very important task to handle the large size solar cell substrate. Many handling robots have been developed and applied in the manufacturing line. As the substrate size gets larger, dynamic analysis and vibration control including flexible forks becomes very important. Precise position control including the vibration of forks and the substrate is very important because solar cell substrate is three to five times heavier than LCD glass substrate. In the paper, we analyzed dynamic motion of the robot and vibration of end-effector including flexible forks using RecurDyn. Motion trajectory is based on tact time in the real production line and motion simulation is performed in the various conditions.","PeriodicalId":385925,"journal":{"name":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dynamic analysis of beam type substrate handling robot in solar cell manufacturing\",\"authors\":\"Dongil Park, C. Park, Yijun Yoo, Hyunmin Do, J. Kyung\",\"doi\":\"10.1109/URAI.2011.6146020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the thin film solar cell production system, it is a very important task to handle the large size solar cell substrate. Many handling robots have been developed and applied in the manufacturing line. As the substrate size gets larger, dynamic analysis and vibration control including flexible forks becomes very important. Precise position control including the vibration of forks and the substrate is very important because solar cell substrate is three to five times heavier than LCD glass substrate. In the paper, we analyzed dynamic motion of the robot and vibration of end-effector including flexible forks using RecurDyn. Motion trajectory is based on tact time in the real production line and motion simulation is performed in the various conditions.\",\"PeriodicalId\":385925,\"journal\":{\"name\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URAI.2011.6146020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URAI.2011.6146020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic analysis of beam type substrate handling robot in solar cell manufacturing
In the thin film solar cell production system, it is a very important task to handle the large size solar cell substrate. Many handling robots have been developed and applied in the manufacturing line. As the substrate size gets larger, dynamic analysis and vibration control including flexible forks becomes very important. Precise position control including the vibration of forks and the substrate is very important because solar cell substrate is three to five times heavier than LCD glass substrate. In the paper, we analyzed dynamic motion of the robot and vibration of end-effector including flexible forks using RecurDyn. Motion trajectory is based on tact time in the real production line and motion simulation is performed in the various conditions.