用于MEMS池塘滑板的无线驱动EWOD技术

Y. Mita, Yifan Li, M. Kubota, W. Parkes, L. Haworth, B. Flynn, J. Terry, T. Tang, A. D. Ruthven, S. Smith, A. Walton
{"title":"用于MEMS池塘滑板的无线驱动EWOD技术","authors":"Y. Mita, Yifan Li, M. Kubota, W. Parkes, L. Haworth, B. Flynn, J. Terry, T. Tang, A. D. Ruthven, S. Smith, A. Walton","doi":"10.1109/ESSDERC.2008.4681759","DOIUrl":null,"url":null,"abstract":"A silicon swimming robot or pond skating device has been demonstrated. It floats on liquid surfaces using surface tension and is capable of movement using electrowetting on dielectric (EWOD) based propulsion. Its dimensions are 6 times 9 mm with a thickness of 380 mum. The driving mechanism involves the trapping of air bubbles within the liquid onto the hydrophobic surface of the device with the subsequent ejection using a recently reported Ta2O5 EWOD technology. The required driving voltage of ~15 V is low enough for RF power transmission, thus providing wire-free movement. A wired version has been measured to move 1.35 mm in 168 ms (a speed of 8 mm s-1). This low-voltage EWOD device, fabricated using a CMOS compatible process, is believed to be the worldpsilas smallest swimming MEMS device that has no mechanical moving parts. The paper also reports results of EWOD droplet operation driven by wireless power transmission and demonstrates that such a wireless design can be successfully mounted on a floating EWOD device.","PeriodicalId":121088,"journal":{"name":"ESSDERC 2008 - 38th European Solid-State Device Research Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wireless driven EWOD technology for a MEMS pond skater\",\"authors\":\"Y. Mita, Yifan Li, M. Kubota, W. Parkes, L. Haworth, B. Flynn, J. Terry, T. Tang, A. D. Ruthven, S. Smith, A. Walton\",\"doi\":\"10.1109/ESSDERC.2008.4681759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A silicon swimming robot or pond skating device has been demonstrated. It floats on liquid surfaces using surface tension and is capable of movement using electrowetting on dielectric (EWOD) based propulsion. Its dimensions are 6 times 9 mm with a thickness of 380 mum. The driving mechanism involves the trapping of air bubbles within the liquid onto the hydrophobic surface of the device with the subsequent ejection using a recently reported Ta2O5 EWOD technology. The required driving voltage of ~15 V is low enough for RF power transmission, thus providing wire-free movement. A wired version has been measured to move 1.35 mm in 168 ms (a speed of 8 mm s-1). This low-voltage EWOD device, fabricated using a CMOS compatible process, is believed to be the worldpsilas smallest swimming MEMS device that has no mechanical moving parts. The paper also reports results of EWOD droplet operation driven by wireless power transmission and demonstrates that such a wireless design can be successfully mounted on a floating EWOD device.\",\"PeriodicalId\":121088,\"journal\":{\"name\":\"ESSDERC 2008 - 38th European Solid-State Device Research Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESSDERC 2008 - 38th European Solid-State Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSDERC.2008.4681759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2008 - 38th European Solid-State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2008.4681759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

一个硅机器人游泳或池塘滑冰装置已被证明。它利用表面张力漂浮在液体表面,并能够利用介电润湿(EWOD)推进运动。其尺寸为6 × 9毫米,厚度为380毫米。驱动机制包括将液体中的气泡捕获到设备的疏水性表面上,随后使用最近报道的Ta2O5 EWOD技术进行喷射。所需的~ 15v驱动电压足够低,可以进行射频功率传输,从而提供无线移动。据测量,一个有线版本在168毫秒内移动了1.35毫米(速度为8毫米每秒)。这种低压EWOD器件采用CMOS兼容工艺制造,被认为是世界上最小的游泳MEMS器件,没有机械运动部件。本文还报道了无线电力传输驱动EWOD液滴运行的结果,并证明了这种无线设计可以成功地安装在浮动EWOD装置上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless driven EWOD technology for a MEMS pond skater
A silicon swimming robot or pond skating device has been demonstrated. It floats on liquid surfaces using surface tension and is capable of movement using electrowetting on dielectric (EWOD) based propulsion. Its dimensions are 6 times 9 mm with a thickness of 380 mum. The driving mechanism involves the trapping of air bubbles within the liquid onto the hydrophobic surface of the device with the subsequent ejection using a recently reported Ta2O5 EWOD technology. The required driving voltage of ~15 V is low enough for RF power transmission, thus providing wire-free movement. A wired version has been measured to move 1.35 mm in 168 ms (a speed of 8 mm s-1). This low-voltage EWOD device, fabricated using a CMOS compatible process, is believed to be the worldpsilas smallest swimming MEMS device that has no mechanical moving parts. The paper also reports results of EWOD droplet operation driven by wireless power transmission and demonstrates that such a wireless design can be successfully mounted on a floating EWOD device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信