物理机械处理法回收印刷电路板金属的研究

Camila Mori de Oliveira, R. Bellopede, A. Tori, P. Marini
{"title":"物理机械处理法回收印刷电路板金属的研究","authors":"Camila Mori de Oliveira, R. Bellopede, A. Tori, P. Marini","doi":"10.3390/materproc2021005121","DOIUrl":null,"url":null,"abstract":"The acceleration of the global production and consumption of electronic devices and the concerns related to waste electrical and electronic equipment (WEEE) motivated this research. Printed circuit boards (PCB) can be found in almost all types of electronic devices, and their composition contains heavy metals that can cause environmental impacts due to improper disposal. However, on the other hand, there are elements with added value, such as copper, gold, silver, iron, aluminum and other critical raw materials, such as tantalum, that can be recovered. Metal recovery can conserve natural resources since it prevents new minerals from being extracted, being a great contribution to the circular economy. In this research, the PCB element composition was initially determined through the scanning electron microscope analysis. Then, the PCB was shredded in a cutting mill and classified in grain size classes by sieving. Afterwards, magnetic separation has been performed together with gravity and electrostatic separation of the non-magnetic fraction. In gravity separation, the metal recovery was satisfactory for the particle size −0.6 + 0.3 mm and for the particle size −1.18 + 0.6 mm. In electrostatic separation, the efficiencies obtained were higher for the smaller particle size (−0.3 mm).","PeriodicalId":235219,"journal":{"name":"International Conference on Raw Materials and Circular Economy","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Study of Metal Recovery from Printed Circuit Boards by Physical-Mechanical Treatment Processes\",\"authors\":\"Camila Mori de Oliveira, R. Bellopede, A. Tori, P. Marini\",\"doi\":\"10.3390/materproc2021005121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The acceleration of the global production and consumption of electronic devices and the concerns related to waste electrical and electronic equipment (WEEE) motivated this research. Printed circuit boards (PCB) can be found in almost all types of electronic devices, and their composition contains heavy metals that can cause environmental impacts due to improper disposal. However, on the other hand, there are elements with added value, such as copper, gold, silver, iron, aluminum and other critical raw materials, such as tantalum, that can be recovered. Metal recovery can conserve natural resources since it prevents new minerals from being extracted, being a great contribution to the circular economy. In this research, the PCB element composition was initially determined through the scanning electron microscope analysis. Then, the PCB was shredded in a cutting mill and classified in grain size classes by sieving. Afterwards, magnetic separation has been performed together with gravity and electrostatic separation of the non-magnetic fraction. In gravity separation, the metal recovery was satisfactory for the particle size −0.6 + 0.3 mm and for the particle size −1.18 + 0.6 mm. In electrostatic separation, the efficiencies obtained were higher for the smaller particle size (−0.3 mm).\",\"PeriodicalId\":235219,\"journal\":{\"name\":\"International Conference on Raw Materials and Circular Economy\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Raw Materials and Circular Economy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/materproc2021005121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Raw Materials and Circular Economy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/materproc2021005121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

全球电子设备生产和消费的加速以及对废弃电子电气设备(WEEE)的关注促使了这项研究。印刷电路板(PCB)几乎存在于所有类型的电子设备中,其成分中含有重金属,如果处理不当,会对环境造成影响。然而,另一方面,也有一些具有附加值的元素,如铜、金、银、铁、铝和其他关键原材料,如钽,可以回收。金属回收可以保护自然资源,因为它可以防止新的矿物被提取,对循环经济做出了巨大贡献。在本研究中,通过扫描电镜分析初步确定了PCB的元素组成。然后,PCB在切割机中粉碎,并通过筛分按粒度分类。然后对非磁性部分进行磁选,同时进行重力分选和静电分选。在重选条件下,−0.6 + 0.3 mm和−1.18 + 0.6 mm的金属回收率较好。在静电分离中,粒径越小(−0.3 mm),效率越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Metal Recovery from Printed Circuit Boards by Physical-Mechanical Treatment Processes
The acceleration of the global production and consumption of electronic devices and the concerns related to waste electrical and electronic equipment (WEEE) motivated this research. Printed circuit boards (PCB) can be found in almost all types of electronic devices, and their composition contains heavy metals that can cause environmental impacts due to improper disposal. However, on the other hand, there are elements with added value, such as copper, gold, silver, iron, aluminum and other critical raw materials, such as tantalum, that can be recovered. Metal recovery can conserve natural resources since it prevents new minerals from being extracted, being a great contribution to the circular economy. In this research, the PCB element composition was initially determined through the scanning electron microscope analysis. Then, the PCB was shredded in a cutting mill and classified in grain size classes by sieving. Afterwards, magnetic separation has been performed together with gravity and electrostatic separation of the non-magnetic fraction. In gravity separation, the metal recovery was satisfactory for the particle size −0.6 + 0.3 mm and for the particle size −1.18 + 0.6 mm. In electrostatic separation, the efficiencies obtained were higher for the smaller particle size (−0.3 mm).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信