{"title":"基于深度神经网络的高速信道建模与信号完整性分析","authors":"Tianjian Lu, Ken Wu, Zhiping Yang, Ju Sun","doi":"10.1109/EPEPS.2017.8329733","DOIUrl":null,"url":null,"abstract":"In this work, deep neural networks (DNNs) are trained and used to model high-speed channels for signal integrity analysis. The DNN models predict eye-diagram metrics by taking advantage of the large amount of simulation results made available in a previous design or at an earlier design stage. The proposed DNN models characterize high-speed channels through extrapolation with saved coefficients, which requires no complex simulations and can be achieved in a highly efficient manner. It is demonstrated through numerical examples that the proposed DNN models achieve good accuracy in predicting eye-diagram metrics from input design parameters. In the DNN models, no assumptions are made on the distributions of and the interactions among individual design parameters.","PeriodicalId":397179,"journal":{"name":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High-speed channel modeling with deep neural network for signal integrity analysis\",\"authors\":\"Tianjian Lu, Ken Wu, Zhiping Yang, Ju Sun\",\"doi\":\"10.1109/EPEPS.2017.8329733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, deep neural networks (DNNs) are trained and used to model high-speed channels for signal integrity analysis. The DNN models predict eye-diagram metrics by taking advantage of the large amount of simulation results made available in a previous design or at an earlier design stage. The proposed DNN models characterize high-speed channels through extrapolation with saved coefficients, which requires no complex simulations and can be achieved in a highly efficient manner. It is demonstrated through numerical examples that the proposed DNN models achieve good accuracy in predicting eye-diagram metrics from input design parameters. In the DNN models, no assumptions are made on the distributions of and the interactions among individual design parameters.\",\"PeriodicalId\":397179,\"journal\":{\"name\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPS.2017.8329733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2017.8329733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-speed channel modeling with deep neural network for signal integrity analysis
In this work, deep neural networks (DNNs) are trained and used to model high-speed channels for signal integrity analysis. The DNN models predict eye-diagram metrics by taking advantage of the large amount of simulation results made available in a previous design or at an earlier design stage. The proposed DNN models characterize high-speed channels through extrapolation with saved coefficients, which requires no complex simulations and can be achieved in a highly efficient manner. It is demonstrated through numerical examples that the proposed DNN models achieve good accuracy in predicting eye-diagram metrics from input design parameters. In the DNN models, no assumptions are made on the distributions of and the interactions among individual design parameters.