M. Aeberhard, A. Rauch, Marcin Rabiega, N. Kaempchen, T. Bertram
{"title":"先进驾驶辅助系统中基于异步传感器的轨道到轨道融合和基于信息矩阵融合的无序轨道融合","authors":"M. Aeberhard, A. Rauch, Marcin Rabiega, N. Kaempchen, T. Bertram","doi":"10.1109/IVS.2012.6232115","DOIUrl":null,"url":null,"abstract":"Future advanced driver assistance systems will contain multiple sensors that are used for several applications, such as highly automated driving on freeways. The problem is that the sensors are usually asynchronous and their data possibly out-of-sequence, making fusion of the sensor data non-trivial. This paper presents a novel approach to track-to-track fusion for automotive applications with asynchronous and out-of-sequence sensors using information matrix fusion. This approach solves the problem of correlation between sensor data due to the common process noise and common track history, which eliminates the need to replace the global track estimate with the fused local estimate at each fusion cycle. The information matrix fusion approach is evaluated in simulation and its performance demonstrated using real sensor data on a test vehicle designed for highly automated driving on freeways.","PeriodicalId":402389,"journal":{"name":"2012 IEEE Intelligent Vehicles Symposium","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Track-to-track fusion with asynchronous sensors and out-of-sequence tracks using information matrix fusion for advanced driver assistance systems\",\"authors\":\"M. Aeberhard, A. Rauch, Marcin Rabiega, N. Kaempchen, T. Bertram\",\"doi\":\"10.1109/IVS.2012.6232115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future advanced driver assistance systems will contain multiple sensors that are used for several applications, such as highly automated driving on freeways. The problem is that the sensors are usually asynchronous and their data possibly out-of-sequence, making fusion of the sensor data non-trivial. This paper presents a novel approach to track-to-track fusion for automotive applications with asynchronous and out-of-sequence sensors using information matrix fusion. This approach solves the problem of correlation between sensor data due to the common process noise and common track history, which eliminates the need to replace the global track estimate with the fused local estimate at each fusion cycle. The information matrix fusion approach is evaluated in simulation and its performance demonstrated using real sensor data on a test vehicle designed for highly automated driving on freeways.\",\"PeriodicalId\":402389,\"journal\":{\"name\":\"2012 IEEE Intelligent Vehicles Symposium\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2012.6232115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2012.6232115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Track-to-track fusion with asynchronous sensors and out-of-sequence tracks using information matrix fusion for advanced driver assistance systems
Future advanced driver assistance systems will contain multiple sensors that are used for several applications, such as highly automated driving on freeways. The problem is that the sensors are usually asynchronous and their data possibly out-of-sequence, making fusion of the sensor data non-trivial. This paper presents a novel approach to track-to-track fusion for automotive applications with asynchronous and out-of-sequence sensors using information matrix fusion. This approach solves the problem of correlation between sensor data due to the common process noise and common track history, which eliminates the need to replace the global track estimate with the fused local estimate at each fusion cycle. The information matrix fusion approach is evaluated in simulation and its performance demonstrated using real sensor data on a test vehicle designed for highly automated driving on freeways.