基于协方差矩阵非线性函数的频谱估计频率分辨率研究

Jun Chen, Yewei Wu, An Li
{"title":"基于协方差矩阵非线性函数的频谱估计频率分辨率研究","authors":"Jun Chen, Yewei Wu, An Li","doi":"10.1109/ICOSP.2012.6491646","DOIUrl":null,"url":null,"abstract":"This paper studies the frequency resolution of two existing spectral estimators, where one is a generalization of the minimum variance spectral estimators (GMVSE) and the other is Pisarenko's non-linear spectral estimators (PNLSE). By this study, we show the uncovered relationship between the non-linear parameter and the frequency resolution for both the GMVSE and the PNLSE. The results bring out a clear guideline on choosing the parameters for both the GMVSE and the PNLSE to avoid missing any sinusoids.","PeriodicalId":143331,"journal":{"name":"2012 IEEE 11th International Conference on Signal Processing","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on frequency resolution of spectral estimators using non-linear functions of the covariance matrix\",\"authors\":\"Jun Chen, Yewei Wu, An Li\",\"doi\":\"10.1109/ICOSP.2012.6491646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the frequency resolution of two existing spectral estimators, where one is a generalization of the minimum variance spectral estimators (GMVSE) and the other is Pisarenko's non-linear spectral estimators (PNLSE). By this study, we show the uncovered relationship between the non-linear parameter and the frequency resolution for both the GMVSE and the PNLSE. The results bring out a clear guideline on choosing the parameters for both the GMVSE and the PNLSE to avoid missing any sinusoids.\",\"PeriodicalId\":143331,\"journal\":{\"name\":\"2012 IEEE 11th International Conference on Signal Processing\",\"volume\":\"279 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 11th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2012.6491646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2012.6491646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了两种现有谱估计器的频率分辨率,其中一种是最小方差谱估计器(GMVSE)的推广,另一种是Pisarenko的非线性谱估计器(PNLSE)。通过本研究,我们揭示了GMVSE和PNLSE的非线性参数与频率分辨率之间的关系。结果为GMVSE和PNLSE的参数选择提供了明确的指导,以避免遗漏任何正弦波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on frequency resolution of spectral estimators using non-linear functions of the covariance matrix
This paper studies the frequency resolution of two existing spectral estimators, where one is a generalization of the minimum variance spectral estimators (GMVSE) and the other is Pisarenko's non-linear spectral estimators (PNLSE). By this study, we show the uncovered relationship between the non-linear parameter and the frequency resolution for both the GMVSE and the PNLSE. The results bring out a clear guideline on choosing the parameters for both the GMVSE and the PNLSE to avoid missing any sinusoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信