{"title":"非基因遗传和环境变化","authors":"S. Salinas, Simon C. Brown, M. Mangel, S. Munch","doi":"10.2478/NGI-2013-0005","DOIUrl":null,"url":null,"abstract":"Climate change continues to impact species worldwide. Understanding and predicting how populations will respond is of clear importance. Here, we review a mechanism by which populations may respond rapidly to these changes: Trans-Generational Plasticity (TGP). TGP exists when the environment experienced by the parents affects the shape of the reaction norm in their offspring; that is, the parental and offspring environments interact to determine the offspring phenotype. We survey 80 empirical studies from 63 species (32 orders, 9 phyla) that demonstrate TGP. Overall, TGP is taxonomically widespread and present in response to environmental drivers likely to be impacted by climate change. Although many examples now exist, we also identify areas of research that could greatly improve our understanding of TGP. We conclude that TGP is sufficiently established both theoretically and empirically to merit study as a potential coping tactic against rapid environmental changes.","PeriodicalId":318193,"journal":{"name":"Non-Genetic Inheritance","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"137","resultStr":"{\"title\":\"Non-genetic inheritance and changing environments\",\"authors\":\"S. Salinas, Simon C. Brown, M. Mangel, S. Munch\",\"doi\":\"10.2478/NGI-2013-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change continues to impact species worldwide. Understanding and predicting how populations will respond is of clear importance. Here, we review a mechanism by which populations may respond rapidly to these changes: Trans-Generational Plasticity (TGP). TGP exists when the environment experienced by the parents affects the shape of the reaction norm in their offspring; that is, the parental and offspring environments interact to determine the offspring phenotype. We survey 80 empirical studies from 63 species (32 orders, 9 phyla) that demonstrate TGP. Overall, TGP is taxonomically widespread and present in response to environmental drivers likely to be impacted by climate change. Although many examples now exist, we also identify areas of research that could greatly improve our understanding of TGP. We conclude that TGP is sufficiently established both theoretically and empirically to merit study as a potential coping tactic against rapid environmental changes.\",\"PeriodicalId\":318193,\"journal\":{\"name\":\"Non-Genetic Inheritance\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"137\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Genetic Inheritance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/NGI-2013-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Genetic Inheritance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/NGI-2013-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Climate change continues to impact species worldwide. Understanding and predicting how populations will respond is of clear importance. Here, we review a mechanism by which populations may respond rapidly to these changes: Trans-Generational Plasticity (TGP). TGP exists when the environment experienced by the parents affects the shape of the reaction norm in their offspring; that is, the parental and offspring environments interact to determine the offspring phenotype. We survey 80 empirical studies from 63 species (32 orders, 9 phyla) that demonstrate TGP. Overall, TGP is taxonomically widespread and present in response to environmental drivers likely to be impacted by climate change. Although many examples now exist, we also identify areas of research that could greatly improve our understanding of TGP. We conclude that TGP is sufficiently established both theoretically and empirically to merit study as a potential coping tactic against rapid environmental changes.