杜宾车在狭窄空间的机会约束路径规划

Rachit Aggarwal, Mrinal Kumar, Rachel E Keil, Anil V. Rao
{"title":"杜宾车在狭窄空间的机会约束路径规划","authors":"Rachit Aggarwal, Mrinal Kumar, Rachel E Keil, Anil V. Rao","doi":"10.15406/iratj.2021.07.00277","DOIUrl":null,"url":null,"abstract":"The problem of optimal path planning through narrow spaces in an unstructured environment is considered. The optimal path planning problem for a Dubins agent is formulated as a chance-constrained optimal control problem (CCOCP), wherein the uncertainty in obstacle boundaries is modelled using standard probability distributions. The chance constraints are transformed to deterministic equivalents using the inverse cumulative distribution function and subsequently incorporated into a deterministic optimal control problem. Due to multiple convex sub-regions introduced by the obstacles, the initial guess provided to optimal control solver is crucial for computation time and optimality of the solution. A constrained Delaunay triangulation mesh based approach is developed that ensures the initial guess to lie in the optimal sub-convex region. Finally, off-the-shelf software is used to transcribe the optimal control problem to a nonlinear program (NLP) using Gaussian quadrature orthogonal collocation and solved to obtain an optimal path that conforms to system dynamics. By varying the upper bound on probability of obstacle collision, a family of solutions is generated, parameterized by the risk associated with each solution. This approach enables discovery of special “keyhole trajectories” that can provide significant cost savings in a tightly-spaced obstacle field. Merits of this approach are illustrated by comparing it with the traditional bounded uncertainty approach.","PeriodicalId":346234,"journal":{"name":"International Robotics & Automation Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chance-constrained path planning in narrow spaces for a dubins vehicle\",\"authors\":\"Rachit Aggarwal, Mrinal Kumar, Rachel E Keil, Anil V. Rao\",\"doi\":\"10.15406/iratj.2021.07.00277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of optimal path planning through narrow spaces in an unstructured environment is considered. The optimal path planning problem for a Dubins agent is formulated as a chance-constrained optimal control problem (CCOCP), wherein the uncertainty in obstacle boundaries is modelled using standard probability distributions. The chance constraints are transformed to deterministic equivalents using the inverse cumulative distribution function and subsequently incorporated into a deterministic optimal control problem. Due to multiple convex sub-regions introduced by the obstacles, the initial guess provided to optimal control solver is crucial for computation time and optimality of the solution. A constrained Delaunay triangulation mesh based approach is developed that ensures the initial guess to lie in the optimal sub-convex region. Finally, off-the-shelf software is used to transcribe the optimal control problem to a nonlinear program (NLP) using Gaussian quadrature orthogonal collocation and solved to obtain an optimal path that conforms to system dynamics. By varying the upper bound on probability of obstacle collision, a family of solutions is generated, parameterized by the risk associated with each solution. This approach enables discovery of special “keyhole trajectories” that can provide significant cost savings in a tightly-spaced obstacle field. Merits of this approach are illustrated by comparing it with the traditional bounded uncertainty approach.\",\"PeriodicalId\":346234,\"journal\":{\"name\":\"International Robotics & Automation Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Robotics & Automation Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/iratj.2021.07.00277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Robotics & Automation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/iratj.2021.07.00277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究非结构化环境中狭窄空间的最优路径规划问题。将Dubins智能体的最优路径规划问题表述为机会约束最优控制问题(CCOCP),其中障碍物边界的不确定性使用标准概率分布建模。利用逆累积分布函数将机会约束转化为确定性等效约束,并将其纳入确定性最优控制问题。由于障碍物引入了多个凸子区域,因此提供给最优控制求解器的初始猜测对计算时间和解的最优性至关重要。提出了一种基于约束Delaunay三角剖分网格的方法,确保初始猜测位于最优子凸区域。最后,利用现成软件将最优控制问题转化为非线性程序(NLP),采用高斯正交配置法求解,得到符合系统动力学的最优路径。通过改变障碍碰撞概率的上界,生成一组解,并以每个解的风险参数化。这种方法可以发现特殊的“锁眼轨迹”,可以在狭窄的障碍物场中显著节省成本。通过与传统的有界不确定性方法的比较,说明了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chance-constrained path planning in narrow spaces for a dubins vehicle
The problem of optimal path planning through narrow spaces in an unstructured environment is considered. The optimal path planning problem for a Dubins agent is formulated as a chance-constrained optimal control problem (CCOCP), wherein the uncertainty in obstacle boundaries is modelled using standard probability distributions. The chance constraints are transformed to deterministic equivalents using the inverse cumulative distribution function and subsequently incorporated into a deterministic optimal control problem. Due to multiple convex sub-regions introduced by the obstacles, the initial guess provided to optimal control solver is crucial for computation time and optimality of the solution. A constrained Delaunay triangulation mesh based approach is developed that ensures the initial guess to lie in the optimal sub-convex region. Finally, off-the-shelf software is used to transcribe the optimal control problem to a nonlinear program (NLP) using Gaussian quadrature orthogonal collocation and solved to obtain an optimal path that conforms to system dynamics. By varying the upper bound on probability of obstacle collision, a family of solutions is generated, parameterized by the risk associated with each solution. This approach enables discovery of special “keyhole trajectories” that can provide significant cost savings in a tightly-spaced obstacle field. Merits of this approach are illustrated by comparing it with the traditional bounded uncertainty approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信