K. Enokimoto, X. Wen, Yuta Yamato, K. Miyase, H. Sone, S. Kajihara, Masao Aso, H. Furukawa
{"title":"一种用于减少高速扫描测试中发射切换活动的关键区域目标测试集修改方案","authors":"K. Enokimoto, X. Wen, Yuta Yamato, K. Miyase, H. Sone, S. Kajihara, Masao Aso, H. Furukawa","doi":"10.1109/ATS.2009.22","DOIUrl":null,"url":null,"abstract":"Reducing excessive launch switching activity (LSA) is now mandatory in at-speed scan testing for avoiding test-induced yield loss, and test set modification is preferable for this purpose. However, previous low-LSA test set modification methods may be ineffective since they are not targeted at reducing launch switching activity in the areas around long sensitized paths, which are spatially and temporally critical for test-induced yield loss. This paper proposes a novel CAT (Critical-Area-Targeted) low-LSA test modification scheme, which uses long sensitized paths to guide launch-safety checking, test relaxation, and X-filling. As a result, launch switching activity is reduced in a pinpoint manner, which is more effective for avoiding test-induced yield loss. Experimental results on industrial circuits demonstrate the advantage of the CAT scheme for reducing launch switching activity in at-speed scan testing.","PeriodicalId":106283,"journal":{"name":"2009 Asian Test Symposium","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"CAT: A Critical-Area-Targeted Test Set Modification Scheme for Reducing Launch Switching Activity in At-Speed Scan Testing\",\"authors\":\"K. Enokimoto, X. Wen, Yuta Yamato, K. Miyase, H. Sone, S. Kajihara, Masao Aso, H. Furukawa\",\"doi\":\"10.1109/ATS.2009.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing excessive launch switching activity (LSA) is now mandatory in at-speed scan testing for avoiding test-induced yield loss, and test set modification is preferable for this purpose. However, previous low-LSA test set modification methods may be ineffective since they are not targeted at reducing launch switching activity in the areas around long sensitized paths, which are spatially and temporally critical for test-induced yield loss. This paper proposes a novel CAT (Critical-Area-Targeted) low-LSA test modification scheme, which uses long sensitized paths to guide launch-safety checking, test relaxation, and X-filling. As a result, launch switching activity is reduced in a pinpoint manner, which is more effective for avoiding test-induced yield loss. Experimental results on industrial circuits demonstrate the advantage of the CAT scheme for reducing launch switching activity in at-speed scan testing.\",\"PeriodicalId\":106283,\"journal\":{\"name\":\"2009 Asian Test Symposium\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Asian Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.2009.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Asian Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2009.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CAT: A Critical-Area-Targeted Test Set Modification Scheme for Reducing Launch Switching Activity in At-Speed Scan Testing
Reducing excessive launch switching activity (LSA) is now mandatory in at-speed scan testing for avoiding test-induced yield loss, and test set modification is preferable for this purpose. However, previous low-LSA test set modification methods may be ineffective since they are not targeted at reducing launch switching activity in the areas around long sensitized paths, which are spatially and temporally critical for test-induced yield loss. This paper proposes a novel CAT (Critical-Area-Targeted) low-LSA test modification scheme, which uses long sensitized paths to guide launch-safety checking, test relaxation, and X-filling. As a result, launch switching activity is reduced in a pinpoint manner, which is more effective for avoiding test-induced yield loss. Experimental results on industrial circuits demonstrate the advantage of the CAT scheme for reducing launch switching activity in at-speed scan testing.