加速寿命试验统计推断的动态模型

T. Mazzuchi, R. Soyer
{"title":"加速寿命试验统计推断的动态模型","authors":"T. Mazzuchi, R. Soyer","doi":"10.1109/ARMS.1990.67932","DOIUrl":null,"url":null,"abstract":"An approach is presented for inference from accelerated life tests. The approach is based on a dynamic linear model which arises naturally from the accelerated life testing problem and uses linear Bayesian methods for inference. The advantage of the procedure is that it does not require large numbers of items to be tested and that it can deal with both censored and uncensored data. Furthermore, the approach produces closed-form inference results. The use of the approach with some actual accelerated life test data is illustrated.<<ETX>>","PeriodicalId":383597,"journal":{"name":"Annual Proceedings on Reliability and Maintainability Symposium","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic models for statistical inference from accelerated life tests\",\"authors\":\"T. Mazzuchi, R. Soyer\",\"doi\":\"10.1109/ARMS.1990.67932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach is presented for inference from accelerated life tests. The approach is based on a dynamic linear model which arises naturally from the accelerated life testing problem and uses linear Bayesian methods for inference. The advantage of the procedure is that it does not require large numbers of items to be tested and that it can deal with both censored and uncensored data. Furthermore, the approach produces closed-form inference results. The use of the approach with some actual accelerated life test data is illustrated.<<ETX>>\",\"PeriodicalId\":383597,\"journal\":{\"name\":\"Annual Proceedings on Reliability and Maintainability Symposium\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Proceedings on Reliability and Maintainability Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARMS.1990.67932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Proceedings on Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARMS.1990.67932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种从加速寿命试验中进行推理的方法。该方法基于加速寿命测试问题中自然产生的动态线性模型,并使用线性贝叶斯方法进行推理。该方法的优点是,它不需要大量的项目进行测试,它可以处理审查和未经审查的数据。此外,该方法产生封闭形式的推理结果。并结合一些实际的加速寿命试验数据说明了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic models for statistical inference from accelerated life tests
An approach is presented for inference from accelerated life tests. The approach is based on a dynamic linear model which arises naturally from the accelerated life testing problem and uses linear Bayesian methods for inference. The advantage of the procedure is that it does not require large numbers of items to be tested and that it can deal with both censored and uncensored data. Furthermore, the approach produces closed-form inference results. The use of the approach with some actual accelerated life test data is illustrated.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信