使用用户自定义本体的图像分类

Rémi Vieux, J. Domenger, J. Benois-Pineau, A. Braquelaire
{"title":"使用用户自定义本体的图像分类","authors":"Rémi Vieux, J. Domenger, J. Benois-Pineau, A. Braquelaire","doi":"10.5281/ZENODO.40351","DOIUrl":null,"url":null,"abstract":"In this paper we are interested in classification of objects in images according to user defined scenarios. We show how the user-defined ontology with a specialisation by a concrete scenario / object of interest allows for an adapted choice of methods and their tuning through the whole framework: selection of the area of interest, descriptors choice, classification of objects. Particular attention here is payed to the classification. We use SVM classifiers for their good capacity of generalisation. We show that in an adapted descriptor space, the choice of a “light” linear kernel together with boosting of classifiers is interesting compared to more complex and computationally expensive RBF kernels. The results on real-life images are promising. The paper results from the research we conduct in the framework of X-Media EU-funded Integrated Project.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Image classification with user defined ontology\",\"authors\":\"Rémi Vieux, J. Domenger, J. Benois-Pineau, A. Braquelaire\",\"doi\":\"10.5281/ZENODO.40351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we are interested in classification of objects in images according to user defined scenarios. We show how the user-defined ontology with a specialisation by a concrete scenario / object of interest allows for an adapted choice of methods and their tuning through the whole framework: selection of the area of interest, descriptors choice, classification of objects. Particular attention here is payed to the classification. We use SVM classifiers for their good capacity of generalisation. We show that in an adapted descriptor space, the choice of a “light” linear kernel together with boosting of classifiers is interesting compared to more complex and computationally expensive RBF kernels. The results on real-life images are promising. The paper results from the research we conduct in the framework of X-Media EU-funded Integrated Project.\",\"PeriodicalId\":176384,\"journal\":{\"name\":\"2007 15th European Signal Processing Conference\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 15th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.40351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们感兴趣的是根据用户定义的场景对图像中的物体进行分类。我们展示了用户定义的本体如何通过具体的场景/感兴趣的对象进行专门化,从而允许对方法进行适当的选择,并通过整个框架进行调整:选择感兴趣的领域,选择描述符,对对象进行分类。这里要特别注意分类。我们使用支持向量机分类器,因为它具有良好的泛化能力。我们表明,在自适应描述符空间中,与更复杂和计算成本更高的RBF核相比,选择“轻”线性核并增强分类器是有趣的。在真实图像上的结果是有希望的。本文的研究结果来自于我们在X-Media欧盟资助的综合项目框架内进行的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image classification with user defined ontology
In this paper we are interested in classification of objects in images according to user defined scenarios. We show how the user-defined ontology with a specialisation by a concrete scenario / object of interest allows for an adapted choice of methods and their tuning through the whole framework: selection of the area of interest, descriptors choice, classification of objects. Particular attention here is payed to the classification. We use SVM classifiers for their good capacity of generalisation. We show that in an adapted descriptor space, the choice of a “light” linear kernel together with boosting of classifiers is interesting compared to more complex and computationally expensive RBF kernels. The results on real-life images are promising. The paper results from the research we conduct in the framework of X-Media EU-funded Integrated Project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信