诊断多个卡在扫描链故障

Yu Huang, Wu-Tung Cheng, Ruifeng Guo
{"title":"诊断多个卡在扫描链故障","authors":"Yu Huang, Wu-Tung Cheng, Ruifeng Guo","doi":"10.1109/ETS.2008.20","DOIUrl":null,"url":null,"abstract":"Prior effect-cause based chain diagnosis algorithms suffer from accuracy and performance problems when multiple stuck-at faults exist on the same scan chain. In this paper, we propose new chain diagnosis algorithms based on dominant fault pair to enhance diagnosis accuracy and efficiency. Several heuristic techniques are proposed, which include (1) double candidate range calculation, (2) dynamic learning and (3) two- dimensional space linear search. The experimental results illustrate the effectiveness and efficiency of the proposed chain diagnosis algorithms.","PeriodicalId":334529,"journal":{"name":"2008 13th European Test Symposium","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Diagnose Multiple Stuck-at Scan Chain Faults\",\"authors\":\"Yu Huang, Wu-Tung Cheng, Ruifeng Guo\",\"doi\":\"10.1109/ETS.2008.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prior effect-cause based chain diagnosis algorithms suffer from accuracy and performance problems when multiple stuck-at faults exist on the same scan chain. In this paper, we propose new chain diagnosis algorithms based on dominant fault pair to enhance diagnosis accuracy and efficiency. Several heuristic techniques are proposed, which include (1) double candidate range calculation, (2) dynamic learning and (3) two- dimensional space linear search. The experimental results illustrate the effectiveness and efficiency of the proposed chain diagnosis algorithms.\",\"PeriodicalId\":334529,\"journal\":{\"name\":\"2008 13th European Test Symposium\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 13th European Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS.2008.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 13th European Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2008.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

当同一扫描链上存在多个卡滞故障时,基于先验效应原因的链诊断算法存在准确性和性能问题。本文提出了基于优势故障对的链式诊断算法,以提高诊断的准确性和效率。提出了几种启发式技术,包括(1)双候选范围计算,(2)动态学习和(3)二维空间线性搜索。实验结果验证了所提链诊断算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnose Multiple Stuck-at Scan Chain Faults
Prior effect-cause based chain diagnosis algorithms suffer from accuracy and performance problems when multiple stuck-at faults exist on the same scan chain. In this paper, we propose new chain diagnosis algorithms based on dominant fault pair to enhance diagnosis accuracy and efficiency. Several heuristic techniques are proposed, which include (1) double candidate range calculation, (2) dynamic learning and (3) two- dimensional space linear search. The experimental results illustrate the effectiveness and efficiency of the proposed chain diagnosis algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信