用波动耗散理论的玻尔兹曼积分微分方程估计再入飞行器摩擦热

H. Szu
{"title":"用波动耗散理论的玻尔兹曼积分微分方程估计再入飞行器摩擦热","authors":"H. Szu","doi":"10.15406/mojabb.2023.07.00178","DOIUrl":null,"url":null,"abstract":"We begin with Atmosphere Einstein Brownian motions toward Knudsen Gas Boltzmann Kinetic formulism of the fluctuation-dissipation theory and applied the formulism to space travelers reentry vehicles. Early experimental results are estimated on the worst situation upper bound when a reentry vehicle is frictionally passing through a dense atmosphere. In reality, the vehicle has spent more time in a dilute atmosphere space. Accordingly, the fluctuation and dissipation theorem, derived from the Boltzmann kinetic equation, predicted a much less friction heat than the final reentry stage.","PeriodicalId":411709,"journal":{"name":"MOJ Applied Bionics and Biomechanics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-entry vehicle friction heat estimated by means of Boltzmann integral-differential equation of fluctuation-dissipation theory\",\"authors\":\"H. Szu\",\"doi\":\"10.15406/mojabb.2023.07.00178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We begin with Atmosphere Einstein Brownian motions toward Knudsen Gas Boltzmann Kinetic formulism of the fluctuation-dissipation theory and applied the formulism to space travelers reentry vehicles. Early experimental results are estimated on the worst situation upper bound when a reentry vehicle is frictionally passing through a dense atmosphere. In reality, the vehicle has spent more time in a dilute atmosphere space. Accordingly, the fluctuation and dissipation theorem, derived from the Boltzmann kinetic equation, predicted a much less friction heat than the final reentry stage.\",\"PeriodicalId\":411709,\"journal\":{\"name\":\"MOJ Applied Bionics and Biomechanics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOJ Applied Bionics and Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/mojabb.2023.07.00178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOJ Applied Bionics and Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mojabb.2023.07.00178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从大气爱因斯坦布朗运动向克努森气体玻尔兹曼波动耗散理论的动力学公式出发,并将该公式应用于空间旅行者再入飞行器。早期的实验结果是对再入飞行器摩擦穿过稠密大气时的最坏情况上界进行估计的。在现实中,飞行器在稀薄的大气空间中停留的时间更长。因此,由玻尔兹曼动力学方程导出的涨落和耗散定理预测,摩擦热比最后的再入阶段要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Re-entry vehicle friction heat estimated by means of Boltzmann integral-differential equation of fluctuation-dissipation theory
We begin with Atmosphere Einstein Brownian motions toward Knudsen Gas Boltzmann Kinetic formulism of the fluctuation-dissipation theory and applied the formulism to space travelers reentry vehicles. Early experimental results are estimated on the worst situation upper bound when a reentry vehicle is frictionally passing through a dense atmosphere. In reality, the vehicle has spent more time in a dilute atmosphere space. Accordingly, the fluctuation and dissipation theorem, derived from the Boltzmann kinetic equation, predicted a much less friction heat than the final reentry stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信