多无人机路径规划的改进蚁群算法

Jing Li, Yonghua Xiong, Jinhua She
{"title":"多无人机路径规划的改进蚁群算法","authors":"Jing Li, Yonghua Xiong, Jinhua She","doi":"10.1109/ICM46511.2021.9385695","DOIUrl":null,"url":null,"abstract":"As exploiting unmanned aerial vehicles (UAVs) as mobile elements is a new research trend recently, approximation algorithms to solve path planning problems for UAVs are promising approaches. This paper present a solution for the problem of minimum mission time to cover a set of target points in the surveillance area with multiple UAVs. In this methodology, we propose an improved ant colony optimization (ACO) combining ACO with greedy strategy. The main purpose is to find the optimal number of UAVs and to plan the paths of the minimum mission time. Simulation results demonstrate the validity and the superiority of the proposed algorithm.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An improved ant colony optimization for path planning with multiple UAVs\",\"authors\":\"Jing Li, Yonghua Xiong, Jinhua She\",\"doi\":\"10.1109/ICM46511.2021.9385695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As exploiting unmanned aerial vehicles (UAVs) as mobile elements is a new research trend recently, approximation algorithms to solve path planning problems for UAVs are promising approaches. This paper present a solution for the problem of minimum mission time to cover a set of target points in the surveillance area with multiple UAVs. In this methodology, we propose an improved ant colony optimization (ACO) combining ACO with greedy strategy. The main purpose is to find the optimal number of UAVs and to plan the paths of the minimum mission time. Simulation results demonstrate the validity and the superiority of the proposed algorithm.\",\"PeriodicalId\":373423,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM46511.2021.9385695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

利用无人机作为移动单元是近年来研究的一个新趋势,逼近算法是解决无人机路径规划问题的一种很有前途的方法。针对多架无人机在监视区域内覆盖一组目标点时任务时间最短的问题,提出了一种解决方案。在此方法中,我们提出了一种将蚁群优化与贪婪策略相结合的改进蚁群优化方法。其主要目的是寻找最优的无人机数量和规划最短任务时间的路径。仿真结果验证了该算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved ant colony optimization for path planning with multiple UAVs
As exploiting unmanned aerial vehicles (UAVs) as mobile elements is a new research trend recently, approximation algorithms to solve path planning problems for UAVs are promising approaches. This paper present a solution for the problem of minimum mission time to cover a set of target points in the surveillance area with multiple UAVs. In this methodology, we propose an improved ant colony optimization (ACO) combining ACO with greedy strategy. The main purpose is to find the optimal number of UAVs and to plan the paths of the minimum mission time. Simulation results demonstrate the validity and the superiority of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信