锂离子电池组的智能热管理系统设计

Mohammad Joula, S. Dilibal, J. Owusu-Danquah
{"title":"锂离子电池组的智能热管理系统设计","authors":"Mohammad Joula, S. Dilibal, J. Owusu-Danquah","doi":"10.1109/ICM46511.2021.9385607","DOIUrl":null,"url":null,"abstract":"Li-ion battery packs are used in varied industrial fields, such as automotive, drone, and e-bike industries. Low temperature insulation and high temperature heat conduction are required for an ideal thermal management of battery pack. In this study, an autonomous system design is developed for a smart adaptronic Battery Thermal Management System (BTMS). We proposed two different nickel-titanium (NiTi) shape memory alloy (SMA)-actuated smart adaptronic BTMSs. The actuation strain of the system is examined using a computational NiTi shape memory alloy model for material selection. The model results showed that an actuation strain of 3.8 % can be obtained for the operating temperatures range between 15°C and 80 °C. The model results is used to unveil the required properties of NiTi SMA wire. The proposed adaptronic BTMS design solutions can create competitive advantages with their compact, low-cost, and lightweight structures in industry.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"35 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Adaptronic Thermal Management System Designs for The Li-ion Battery Packs\",\"authors\":\"Mohammad Joula, S. Dilibal, J. Owusu-Danquah\",\"doi\":\"10.1109/ICM46511.2021.9385607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Li-ion battery packs are used in varied industrial fields, such as automotive, drone, and e-bike industries. Low temperature insulation and high temperature heat conduction are required for an ideal thermal management of battery pack. In this study, an autonomous system design is developed for a smart adaptronic Battery Thermal Management System (BTMS). We proposed two different nickel-titanium (NiTi) shape memory alloy (SMA)-actuated smart adaptronic BTMSs. The actuation strain of the system is examined using a computational NiTi shape memory alloy model for material selection. The model results showed that an actuation strain of 3.8 % can be obtained for the operating temperatures range between 15°C and 80 °C. The model results is used to unveil the required properties of NiTi SMA wire. The proposed adaptronic BTMS design solutions can create competitive advantages with their compact, low-cost, and lightweight structures in industry.\",\"PeriodicalId\":373423,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"35 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM46511.2021.9385607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池组用于各种工业领域,如汽车、无人机、电动自行车行业。理想的电池组热管理需要低温绝缘和高温导热。本研究针对智能自适应电池热管理系统(BTMS)进行自主系统设计。我们提出了两种不同的镍钛(NiTi)形状记忆合金(SMA)驱动的智能自适应电子btms。采用计算NiTi形状记忆合金模型对系统的驱动应变进行了检测,以供材料选择。模型结果表明,在15 ~ 80℃的工作温度范围内,驱动应变为3.8%。模型结果用于揭示NiTi SMA丝所需的性能。所提出的自适应BTMS设计解决方案具有紧凑、低成本和轻量化的结构,可以在工业中创造竞争优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Adaptronic Thermal Management System Designs for The Li-ion Battery Packs
Li-ion battery packs are used in varied industrial fields, such as automotive, drone, and e-bike industries. Low temperature insulation and high temperature heat conduction are required for an ideal thermal management of battery pack. In this study, an autonomous system design is developed for a smart adaptronic Battery Thermal Management System (BTMS). We proposed two different nickel-titanium (NiTi) shape memory alloy (SMA)-actuated smart adaptronic BTMSs. The actuation strain of the system is examined using a computational NiTi shape memory alloy model for material selection. The model results showed that an actuation strain of 3.8 % can be obtained for the operating temperatures range between 15°C and 80 °C. The model results is used to unveil the required properties of NiTi SMA wire. The proposed adaptronic BTMS design solutions can create competitive advantages with their compact, low-cost, and lightweight structures in industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信