{"title":"新型量子点晶体管","authors":"Y. Wang, S. Chou","doi":"10.1109/DRC.1993.1009614","DOIUrl":null,"url":null,"abstract":"Summary form only given. The authors propose and demonstrate a novel quantum dot transistor (QDT), which consists of a nanoscale dot-gate inside the gap of a split-gate. The dot-gate consists of an 80-nm-diameter metal dot in the middle of a 30-nm-wide metal wire; when positively biased, the gate creates a quantum box connected by two 1D wires beneath the gate. The negatively biased split-gate is used to change the Fermi level and therefore the electron concentration in the quantum box. The gates are fabricated on top of a delta -doped AlGaAs/GaAs heterostructure using electron-beam lithography followed by a lift-off of Ti/Au. As the dot-gate voltage was scanned from 0 to 160 mV with the split-gate voltage fixed at -0.5 V, four distinct oscillation peaks appeared in drain current at T=0.5 K. >","PeriodicalId":310841,"journal":{"name":"51st Annual Device Research Conference","volume":"27 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new quantum dot transistor\",\"authors\":\"Y. Wang, S. Chou\",\"doi\":\"10.1109/DRC.1993.1009614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The authors propose and demonstrate a novel quantum dot transistor (QDT), which consists of a nanoscale dot-gate inside the gap of a split-gate. The dot-gate consists of an 80-nm-diameter metal dot in the middle of a 30-nm-wide metal wire; when positively biased, the gate creates a quantum box connected by two 1D wires beneath the gate. The negatively biased split-gate is used to change the Fermi level and therefore the electron concentration in the quantum box. The gates are fabricated on top of a delta -doped AlGaAs/GaAs heterostructure using electron-beam lithography followed by a lift-off of Ti/Au. As the dot-gate voltage was scanned from 0 to 160 mV with the split-gate voltage fixed at -0.5 V, four distinct oscillation peaks appeared in drain current at T=0.5 K. >\",\"PeriodicalId\":310841,\"journal\":{\"name\":\"51st Annual Device Research Conference\",\"volume\":\"27 22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"51st Annual Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.1993.1009614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"51st Annual Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.1993.1009614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
只提供摘要形式。作者提出并演示了一种新型量子点晶体管(QDT),它由一个纳米级的点栅在一个分栅的间隙内组成。所述点栅由直径为80纳米的金属点置于宽为30纳米的金属丝中间组成;当正极偏置时,栅极在栅极下面形成一个由两根1D线连接的量子盒。负偏裂门被用来改变费米能级,从而改变量子箱中的电子浓度。采用电子束光刻技术在δ掺杂AlGaAs/GaAs异质结构上制备栅极,然后进行Ti/Au的提升。当点栅电压在0 ~ 160 mV范围内扫描,分栅电压固定在-0.5 V时,漏极电流在T=0.5 k >处出现了四个明显的振荡峰
Summary form only given. The authors propose and demonstrate a novel quantum dot transistor (QDT), which consists of a nanoscale dot-gate inside the gap of a split-gate. The dot-gate consists of an 80-nm-diameter metal dot in the middle of a 30-nm-wide metal wire; when positively biased, the gate creates a quantum box connected by two 1D wires beneath the gate. The negatively biased split-gate is used to change the Fermi level and therefore the electron concentration in the quantum box. The gates are fabricated on top of a delta -doped AlGaAs/GaAs heterostructure using electron-beam lithography followed by a lift-off of Ti/Au. As the dot-gate voltage was scanned from 0 to 160 mV with the split-gate voltage fixed at -0.5 V, four distinct oscillation peaks appeared in drain current at T=0.5 K. >