无线传感器网络中的响应汇迁移

D. Puccinelli, Matthew Brennan, M. Haenggi
{"title":"无线传感器网络中的响应汇迁移","authors":"D. Puccinelli, Matthew Brennan, M. Haenggi","doi":"10.1145/1247694.1247700","DOIUrl":null,"url":null,"abstract":"The ability of a sink node to move can greatly improve the fault tolerance and load balancing properties of a sensor network. Rather than assuming extensive mobility and trying to minimize the large-scale path loss between the mobile sink and the nodes, we focus on limited-scope, arbitrary mobility triggered in response to a form of network feedback. Due to multipath fading effects, limited mobility dynamically modifies the set of sink neighbors and distributes network traffic over a larger number of nodes. We illustrate the impact of this reactive sink mobility concept on data collection by implementing it on top of a novel gradient-based routing protocol. We use Berkeley motes to present a proof of concept as well as a performance evaluation of our approach, with a particular emphasis on the advantages in terms of robustness and lifetime.","PeriodicalId":198518,"journal":{"name":"International Workshop on Mobile Opportunistic Networks","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Reactive sink mobility in wireless sensor networks\",\"authors\":\"D. Puccinelli, Matthew Brennan, M. Haenggi\",\"doi\":\"10.1145/1247694.1247700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of a sink node to move can greatly improve the fault tolerance and load balancing properties of a sensor network. Rather than assuming extensive mobility and trying to minimize the large-scale path loss between the mobile sink and the nodes, we focus on limited-scope, arbitrary mobility triggered in response to a form of network feedback. Due to multipath fading effects, limited mobility dynamically modifies the set of sink neighbors and distributes network traffic over a larger number of nodes. We illustrate the impact of this reactive sink mobility concept on data collection by implementing it on top of a novel gradient-based routing protocol. We use Berkeley motes to present a proof of concept as well as a performance evaluation of our approach, with a particular emphasis on the advantages in terms of robustness and lifetime.\",\"PeriodicalId\":198518,\"journal\":{\"name\":\"International Workshop on Mobile Opportunistic Networks\",\"volume\":\"2018 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Mobile Opportunistic Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1247694.1247700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Mobile Opportunistic Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1247694.1247700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

汇聚节点的移动能力可以极大地提高传感器网络的容错性和负载均衡性能。而不是假设广泛的移动性,并试图最小化移动sink和节点之间的大规模路径损失,我们专注于响应网络反馈形式而触发的有限范围的任意移动性。由于多径衰落效应,有限移动动态修改汇聚邻居集,并将网络流量分配到更多的节点上。我们通过在一种新的基于梯度的路由协议之上实现这种反应性汇迁移概念来说明它对数据收集的影响。我们使用伯克利笔记来展示概念证明以及我们的方法的性能评估,特别强调在鲁棒性和生命周期方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reactive sink mobility in wireless sensor networks
The ability of a sink node to move can greatly improve the fault tolerance and load balancing properties of a sensor network. Rather than assuming extensive mobility and trying to minimize the large-scale path loss between the mobile sink and the nodes, we focus on limited-scope, arbitrary mobility triggered in response to a form of network feedback. Due to multipath fading effects, limited mobility dynamically modifies the set of sink neighbors and distributes network traffic over a larger number of nodes. We illustrate the impact of this reactive sink mobility concept on data collection by implementing it on top of a novel gradient-based routing protocol. We use Berkeley motes to present a proof of concept as well as a performance evaluation of our approach, with a particular emphasis on the advantages in terms of robustness and lifetime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信