大型PEEC模型问题的并行波形松弛和矩阵解

G. Antonini, J. Ekman, A.E. Ruehlis
{"title":"大型PEEC模型问题的并行波形松弛和矩阵解","authors":"G. Antonini, J. Ekman, A.E. Ruehlis","doi":"10.1109/EPEP.2007.4387171","DOIUrl":null,"url":null,"abstract":"Excessive compute time is becoming a key problem for high performance system modeling as the complexity of the electromagnetic and circuit models is increasing. At the same time the PEEC models are locally becoming more complex with the increased importance of dielectric and skin-effect losses. In this paper, we consider a combined approach where waveform relaxation is used for the predominant weak coupling while a Gaussian matrix solver is used for the parallelization of the strongly coupled parts of the EM/Ckt solver.","PeriodicalId":402571,"journal":{"name":"2007 IEEE Electrical Performance of Electronic Packaging","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Waveform Relaxation and Matrix Solution for Large PEEC Model Problems\",\"authors\":\"G. Antonini, J. Ekman, A.E. Ruehlis\",\"doi\":\"10.1109/EPEP.2007.4387171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive compute time is becoming a key problem for high performance system modeling as the complexity of the electromagnetic and circuit models is increasing. At the same time the PEEC models are locally becoming more complex with the increased importance of dielectric and skin-effect losses. In this paper, we consider a combined approach where waveform relaxation is used for the predominant weak coupling while a Gaussian matrix solver is used for the parallelization of the strongly coupled parts of the EM/Ckt solver.\",\"PeriodicalId\":402571,\"journal\":{\"name\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Electrical Performance of Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEP.2007.4387171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Electrical Performance of Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEP.2007.4387171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着电磁和电路模型复杂性的不断增加,计算时间过长已成为高性能系统建模的关键问题。同时,随着介电损耗和趋肤效应损耗的日益重要,PEEC模型在局部也变得越来越复杂。在本文中,我们考虑了一种组合方法,其中波形松弛用于主要的弱耦合,而高斯矩阵求解器用于EM/Ckt求解器的强耦合部分的并行化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Waveform Relaxation and Matrix Solution for Large PEEC Model Problems
Excessive compute time is becoming a key problem for high performance system modeling as the complexity of the electromagnetic and circuit models is increasing. At the same time the PEEC models are locally becoming more complex with the increased importance of dielectric and skin-effect losses. In this paper, we consider a combined approach where waveform relaxation is used for the predominant weak coupling while a Gaussian matrix solver is used for the parallelization of the strongly coupled parts of the EM/Ckt solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信