基于欧几里得距离的脑机接口运动想象任务分类

M. Fira, Roxana Aldea, A. Lazar, L. Goras
{"title":"基于欧几里得距离的脑机接口运动想象任务分类","authors":"M. Fira, Roxana Aldea, A. Lazar, L. Goras","doi":"10.1109/NEUREL.2014.7011477","DOIUrl":null,"url":null,"abstract":"In this paper we propose and discuss a new classification method of motor imagery tasks based on patterns and Euclidean distance. The proposed method is simple, fast, but considerably sensitive with respect to the selected features/frequencies for classification. Choosing a predefined number of features leads to results similar to GTEC/BCI2000 while an optimal selection gives improved results but still requires additional investigation.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classifications of motor imagery tasks in brain computer interface using Euclidean distance\",\"authors\":\"M. Fira, Roxana Aldea, A. Lazar, L. Goras\",\"doi\":\"10.1109/NEUREL.2014.7011477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose and discuss a new classification method of motor imagery tasks based on patterns and Euclidean distance. The proposed method is simple, fast, but considerably sensitive with respect to the selected features/frequencies for classification. Choosing a predefined number of features leads to results similar to GTEC/BCI2000 while an optimal selection gives improved results but still requires additional investigation.\",\"PeriodicalId\":402208,\"journal\":{\"name\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2014.7011477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出并讨论了一种基于模式和欧氏距离的运动想象任务分类方法。该方法简单、快速,但对所选特征/频率的分类相当敏感。选择预定义数量的特性会得到与GTEC/BCI2000类似的结果,而最佳选择会得到改进的结果,但仍需要额外的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifications of motor imagery tasks in brain computer interface using Euclidean distance
In this paper we propose and discuss a new classification method of motor imagery tasks based on patterns and Euclidean distance. The proposed method is simple, fast, but considerably sensitive with respect to the selected features/frequencies for classification. Choosing a predefined number of features leads to results similar to GTEC/BCI2000 while an optimal selection gives improved results but still requires additional investigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信