基于强化学习的manet均衡节能路由

Wibhada Naruephiphat, W. Usaha
{"title":"基于强化学习的manet均衡节能路由","authors":"Wibhada Naruephiphat, W. Usaha","doi":"10.1109/ICOIN.2008.4472784","DOIUrl":null,"url":null,"abstract":"This paper proposes an energy-efficient path selection algorithm which aims at balancing the contrasting objectives of maximizing network lifetime and minimizing energy consumption routing in mobile ad hoc networks (MANETs). The method is based on a reinforcement learning technique called the on- policy Monte Carlo (ONMC) method. Simulation results show that variants of the proposed method can outperform existing schemes such as variants of the conditional max-min battery capacity routing (CMMBR) and the best minimum combined- cost routing algorithm in terms of the long-term average reward which depicts the balance of the tradeoff in dynamic topology environments.","PeriodicalId":447966,"journal":{"name":"2008 International Conference on Information Networking","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Balanced Energy-Efficient Routing in MANETs using Reinforcement Learning\",\"authors\":\"Wibhada Naruephiphat, W. Usaha\",\"doi\":\"10.1109/ICOIN.2008.4472784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an energy-efficient path selection algorithm which aims at balancing the contrasting objectives of maximizing network lifetime and minimizing energy consumption routing in mobile ad hoc networks (MANETs). The method is based on a reinforcement learning technique called the on- policy Monte Carlo (ONMC) method. Simulation results show that variants of the proposed method can outperform existing schemes such as variants of the conditional max-min battery capacity routing (CMMBR) and the best minimum combined- cost routing algorithm in terms of the long-term average reward which depicts the balance of the tradeoff in dynamic topology environments.\",\"PeriodicalId\":447966,\"journal\":{\"name\":\"2008 International Conference on Information Networking\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Information Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN.2008.4472784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Information Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2008.4472784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种高效节能的路径选择算法,旨在平衡移动自组网(manet)中最大化网络生存期和最小化能耗路由的对比目标。该方法基于一种被称为on- policy Monte Carlo (ONMC)方法的强化学习技术。仿真结果表明,该方法在描述动态拓扑环境中权衡平衡的长期平均奖励方面优于条件最大最小电池容量路由(CMMBR)和最佳最小组合成本路由算法等现有方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Balanced Energy-Efficient Routing in MANETs using Reinforcement Learning
This paper proposes an energy-efficient path selection algorithm which aims at balancing the contrasting objectives of maximizing network lifetime and minimizing energy consumption routing in mobile ad hoc networks (MANETs). The method is based on a reinforcement learning technique called the on- policy Monte Carlo (ONMC) method. Simulation results show that variants of the proposed method can outperform existing schemes such as variants of the conditional max-min battery capacity routing (CMMBR) and the best minimum combined- cost routing algorithm in terms of the long-term average reward which depicts the balance of the tradeoff in dynamic topology environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信