{"title":"一个实用的Android运行时多层次信息流跟踪系统","authors":"Mingshen Sun, Tao Wei, John C.S. Lui","doi":"10.1145/2976749.2978343","DOIUrl":null,"url":null,"abstract":"Mobile operating systems like Android failed to provide sufficient protection on personal data, and privacy leakage becomes a major concern. To understand the security risks and privacy leakage, analysts have to carry out data-flow analysis. In 2014, Android upgraded with a fundamentally new design known as Android RunTime (ART) environment in Android 5.0. ART adopts ahead-of-time compilation strategy and replaces previous virtual-machine-based Dalvik. Unfortunately, many data-flow analysis systems like TaintDroid were designed for the legacy Dalvik environment. This makes data-flow analysis of new apps and malware infeasible. We design a multi-level information-flow tracking system for the new Android system called TaintART. TaintART employs a multi-level taint analysis technique to minimize the taint tag storage. Therefore, taint tags can be stored in processor registers to provide efficient taint propagation operations. We also customize the ART compiler to maximize performance gains of the ahead-of-time compilation optimizations. Based on the general design of TaintART, we also implement a multi-level privacy enforcement to prevent sensitive data leakage. We demonstrate that TaintART only incurs less than 15% overheads on a CPU-bound microbenchmark and negligible overhead on built-in or third-party applications. Compared to legacy Dalvik environment in Android 4.4, TaintART achieves about 99.7% faster performance for Java runtime benchmark.","PeriodicalId":432261,"journal":{"name":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","volume":"4 22","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":"{\"title\":\"TaintART: A Practical Multi-level Information-Flow Tracking System for Android RunTime\",\"authors\":\"Mingshen Sun, Tao Wei, John C.S. Lui\",\"doi\":\"10.1145/2976749.2978343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile operating systems like Android failed to provide sufficient protection on personal data, and privacy leakage becomes a major concern. To understand the security risks and privacy leakage, analysts have to carry out data-flow analysis. In 2014, Android upgraded with a fundamentally new design known as Android RunTime (ART) environment in Android 5.0. ART adopts ahead-of-time compilation strategy and replaces previous virtual-machine-based Dalvik. Unfortunately, many data-flow analysis systems like TaintDroid were designed for the legacy Dalvik environment. This makes data-flow analysis of new apps and malware infeasible. We design a multi-level information-flow tracking system for the new Android system called TaintART. TaintART employs a multi-level taint analysis technique to minimize the taint tag storage. Therefore, taint tags can be stored in processor registers to provide efficient taint propagation operations. We also customize the ART compiler to maximize performance gains of the ahead-of-time compilation optimizations. Based on the general design of TaintART, we also implement a multi-level privacy enforcement to prevent sensitive data leakage. We demonstrate that TaintART only incurs less than 15% overheads on a CPU-bound microbenchmark and negligible overhead on built-in or third-party applications. Compared to legacy Dalvik environment in Android 4.4, TaintART achieves about 99.7% faster performance for Java runtime benchmark.\",\"PeriodicalId\":432261,\"journal\":{\"name\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"4 22\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"164\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2976749.2978343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976749.2978343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TaintART: A Practical Multi-level Information-Flow Tracking System for Android RunTime
Mobile operating systems like Android failed to provide sufficient protection on personal data, and privacy leakage becomes a major concern. To understand the security risks and privacy leakage, analysts have to carry out data-flow analysis. In 2014, Android upgraded with a fundamentally new design known as Android RunTime (ART) environment in Android 5.0. ART adopts ahead-of-time compilation strategy and replaces previous virtual-machine-based Dalvik. Unfortunately, many data-flow analysis systems like TaintDroid were designed for the legacy Dalvik environment. This makes data-flow analysis of new apps and malware infeasible. We design a multi-level information-flow tracking system for the new Android system called TaintART. TaintART employs a multi-level taint analysis technique to minimize the taint tag storage. Therefore, taint tags can be stored in processor registers to provide efficient taint propagation operations. We also customize the ART compiler to maximize performance gains of the ahead-of-time compilation optimizations. Based on the general design of TaintART, we also implement a multi-level privacy enforcement to prevent sensitive data leakage. We demonstrate that TaintART only incurs less than 15% overheads on a CPU-bound microbenchmark and negligible overhead on built-in or third-party applications. Compared to legacy Dalvik environment in Android 4.4, TaintART achieves about 99.7% faster performance for Java runtime benchmark.