用于除法和平方根的兼容硬件

G. Taylor
{"title":"用于除法和平方根的兼容硬件","authors":"G. Taylor","doi":"10.1109/ARITH.1981.6159293","DOIUrl":null,"url":null,"abstract":"Hardware for radix four division and radix two square root is shared in a processor designed to implement the proposed IEEE floating-point standard. The division hardware looks ahead to find the next quotient digit in parallel with the next partial remainder. An 8-bit ALU estimates the next remainder's leading bits. The quotient digit look-up table is addressed with a truncation of the estimate rather than a truncation of the full partial remainder. The estimation ALU and the look-up table are asymmetric for positive and negative remainders. This asymmetry reduces the width of the ALU and the number of minterms in the logic equations for thy look-up table. The square root algorithm obtains the correctly rounded result in about two division times using small extensions to the division hardware.","PeriodicalId":169426,"journal":{"name":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Compatible hardware for division and square root\",\"authors\":\"G. Taylor\",\"doi\":\"10.1109/ARITH.1981.6159293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware for radix four division and radix two square root is shared in a processor designed to implement the proposed IEEE floating-point standard. The division hardware looks ahead to find the next quotient digit in parallel with the next partial remainder. An 8-bit ALU estimates the next remainder's leading bits. The quotient digit look-up table is addressed with a truncation of the estimate rather than a truncation of the full partial remainder. The estimation ALU and the look-up table are asymmetric for positive and negative remainders. This asymmetry reduces the width of the ALU and the number of minterms in the logic equations for thy look-up table. The square root algorithm obtains the correctly rounded result in about two division times using small extensions to the division hardware.\",\"PeriodicalId\":169426,\"journal\":{\"name\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1981.6159293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1981.6159293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

为实现所提出的IEEE浮点标准,在一个处理器中共享了用于基数四除法和基数二平方根的硬件。除法硬件向前查找与下一个部分余数平行的下一个商数。一个8位ALU估计下一个余数的前导位。商数查找表是用估计值的截断而不是完全部分余数的截断来寻址的。估计ALU和查找表对于正余数和负余数是不对称的。这种不对称性减少了ALU的宽度和查找表中逻辑方程中的最小项的数量。平方根算法使用对除法硬件的小扩展,在大约两次除法次数中获得正确的舍入结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compatible hardware for division and square root
Hardware for radix four division and radix two square root is shared in a processor designed to implement the proposed IEEE floating-point standard. The division hardware looks ahead to find the next quotient digit in parallel with the next partial remainder. An 8-bit ALU estimates the next remainder's leading bits. The quotient digit look-up table is addressed with a truncation of the estimate rather than a truncation of the full partial remainder. The estimation ALU and the look-up table are asymmetric for positive and negative remainders. This asymmetry reduces the width of the ALU and the number of minterms in the logic equations for thy look-up table. The square root algorithm obtains the correctly rounded result in about two division times using small extensions to the division hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信