矩阵函数frechet导数的约当形式

M. A. Marmolejo
{"title":"矩阵函数frechet导数的约当形式","authors":"M. A. Marmolejo","doi":"10.18273/REVINT.V36N1-2018001","DOIUrl":null,"url":null,"abstract":"espanolEn este articulo se presenta una formula para evaluar funciones matriciales f : A ⊂ C 2×2 → C 2×2, en terminos de dos funciones escalares que solo dependen de la traza y el determinante de X ∈ C 2×2 . Se explota el conocimiento de las derivadas de Frechet de las funciones traza y determinante para determinar la derivada de Frechet de f(·). Como resultado central, se da la forma canonica de Jordan de la derivada de Frechet Df(X) : C 2×2 → C 2×2. EnglishIn this paper we present a formula to evaluate matrix functions f : A ⊂ C 2×2 → C 2×2, in terms of two scalar functions that only depend on the trace and the determinant of X ∈ C 2×2 . The knowledge of the Frechet derivatives of the trace and determinant functions is used to determine the Frechet derivative of f(·). As a central result, Jordan's canonical form of the Frechet derivative Df(X) : C 2×2 → C 2×2 is given.","PeriodicalId":402331,"journal":{"name":"Revista Integración","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forma de Jordan de la derivada de Fréchet de funciones matriciales\",\"authors\":\"M. A. Marmolejo\",\"doi\":\"10.18273/REVINT.V36N1-2018001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"espanolEn este articulo se presenta una formula para evaluar funciones matriciales f : A ⊂ C 2×2 → C 2×2, en terminos de dos funciones escalares que solo dependen de la traza y el determinante de X ∈ C 2×2 . Se explota el conocimiento de las derivadas de Frechet de las funciones traza y determinante para determinar la derivada de Frechet de f(·). Como resultado central, se da la forma canonica de Jordan de la derivada de Frechet Df(X) : C 2×2 → C 2×2. EnglishIn this paper we present a formula to evaluate matrix functions f : A ⊂ C 2×2 → C 2×2, in terms of two scalar functions that only depend on the trace and the determinant of X ∈ C 2×2 . The knowledge of the Frechet derivatives of the trace and determinant functions is used to determine the Frechet derivative of f(·). As a central result, Jordan's canonical form of the Frechet derivative Df(X) : C 2×2 → C 2×2 is given.\",\"PeriodicalId\":402331,\"journal\":{\"name\":\"Revista Integración\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Integración\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/REVINT.V36N1-2018001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Integración","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/REVINT.V36N1-2018001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一个计算矩阵函数f: A⊂c2 ×2→c2 ×2的公式,该公式适用于两个只依赖于X∈c2 ×2的轨迹和行列式的标量函数。利用追踪函数和行列式函数的Frechet导数的知识来确定f(·)的Frechet导数。作为中心结果,给出了Frechet导数Df(X): c2 ×2→c2 ×2的正则约当形式。在这篇论文中,我们给出了一个计算矩阵函数f: a⊂c2 ×2→c2 ×2的公式,用两个标量函数表示,这两个标量函数只依赖于X∈c2 ×2的轨迹和行列式。= =地理= =根据美国人口普查,这个县的面积为,其中土地面积为,其中土地面积为。作为中心结果,给出了Frechet导数Df(X): c2 ×2→c2 ×2的Jordan规范形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forma de Jordan de la derivada de Fréchet de funciones matriciales
espanolEn este articulo se presenta una formula para evaluar funciones matriciales f : A ⊂ C 2×2 → C 2×2, en terminos de dos funciones escalares que solo dependen de la traza y el determinante de X ∈ C 2×2 . Se explota el conocimiento de las derivadas de Frechet de las funciones traza y determinante para determinar la derivada de Frechet de f(·). Como resultado central, se da la forma canonica de Jordan de la derivada de Frechet Df(X) : C 2×2 → C 2×2. EnglishIn this paper we present a formula to evaluate matrix functions f : A ⊂ C 2×2 → C 2×2, in terms of two scalar functions that only depend on the trace and the determinant of X ∈ C 2×2 . The knowledge of the Frechet derivatives of the trace and determinant functions is used to determine the Frechet derivative of f(·). As a central result, Jordan's canonical form of the Frechet derivative Df(X) : C 2×2 → C 2×2 is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信