基于地图约简的红外系统分类与检索策略建模

Shen Gao, Kai Gao
{"title":"基于地图约简的红外系统分类与检索策略建模","authors":"Shen Gao, Kai Gao","doi":"10.1109/ICMIC.2014.7020773","DOIUrl":null,"url":null,"abstract":"Classification is essential to many web applications. Instead of the traditional segmentation as usual, this paper presents a novel non-segment classification approach, which can meet the requirement for big data classification & application. The novel algorithm removes the complicated time consuming segmentation. The experimental results and the analysis show the feasible of the approach. Based on the proposed approach, a map-reduce based distributed IR system is present.","PeriodicalId":405363,"journal":{"name":"Proceedings of 2014 International Conference on Modelling, Identification & Control","volume":"23 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling on classification and retrieval strategy in map-reduce based IR system\",\"authors\":\"Shen Gao, Kai Gao\",\"doi\":\"10.1109/ICMIC.2014.7020773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification is essential to many web applications. Instead of the traditional segmentation as usual, this paper presents a novel non-segment classification approach, which can meet the requirement for big data classification & application. The novel algorithm removes the complicated time consuming segmentation. The experimental results and the analysis show the feasible of the approach. Based on the proposed approach, a map-reduce based distributed IR system is present.\",\"PeriodicalId\":405363,\"journal\":{\"name\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"volume\":\"23 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2014 International Conference on Modelling, Identification & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2014.7020773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Modelling, Identification & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2014.7020773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分类对许多web应用程序来说是必不可少的。本文提出了一种新的非分段分类方法,以满足大数据分类与应用的需要,取代了传统的分类方法。该算法消除了复杂耗时的分割。实验结果和分析表明了该方法的可行性。在此基础上,提出了一种基于地图约简的分布式红外系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling on classification and retrieval strategy in map-reduce based IR system
Classification is essential to many web applications. Instead of the traditional segmentation as usual, this paper presents a novel non-segment classification approach, which can meet the requirement for big data classification & application. The novel algorithm removes the complicated time consuming segmentation. The experimental results and the analysis show the feasible of the approach. Based on the proposed approach, a map-reduce based distributed IR system is present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信