基于计算全息成像的三维目标特征提取与分类

SPIE ITCom Pub Date : 2003-11-18 DOI:10.1117/12.511205
Sekwon Yeom, B. Javidi
{"title":"基于计算全息成像的三维目标特征提取与分类","authors":"Sekwon Yeom, B. Javidi","doi":"10.1117/12.511205","DOIUrl":null,"url":null,"abstract":"This paper deals with 3D object classification using computational holographic imaging. A 3D object can be reconstructed at different planes using a single hologram. We apply Principal Component Analysis (PCA) and Fisher Linear Discriminant (FLD) analysis based on Gabor-wavelet feature vectors to classify 3D objects measured by digital interferometry. Experimental and simulation results are presented for regional filtering concentrated at specific positions, and for overall grid filtering. The proposed technique substantially reduces the dimensionality of the 3D classification problem.","PeriodicalId":282161,"journal":{"name":"SPIE ITCom","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional object feature extraction and classification using computational holographic imaging\",\"authors\":\"Sekwon Yeom, B. Javidi\",\"doi\":\"10.1117/12.511205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with 3D object classification using computational holographic imaging. A 3D object can be reconstructed at different planes using a single hologram. We apply Principal Component Analysis (PCA) and Fisher Linear Discriminant (FLD) analysis based on Gabor-wavelet feature vectors to classify 3D objects measured by digital interferometry. Experimental and simulation results are presented for regional filtering concentrated at specific positions, and for overall grid filtering. The proposed technique substantially reduces the dimensionality of the 3D classification problem.\",\"PeriodicalId\":282161,\"journal\":{\"name\":\"SPIE ITCom\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE ITCom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.511205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE ITCom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.511205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于计算全息成像的三维目标分类。一个三维物体可以用一个全息图在不同的平面上重建。应用基于gabor -小波特征向量的主成分分析(PCA)和Fisher线性判别分析(FLD)对数字干涉测量的三维物体进行分类。给出了集中在特定位置的区域滤波和整体网格滤波的实验和仿真结果。该方法大大降低了三维分类问题的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional object feature extraction and classification using computational holographic imaging
This paper deals with 3D object classification using computational holographic imaging. A 3D object can be reconstructed at different planes using a single hologram. We apply Principal Component Analysis (PCA) and Fisher Linear Discriminant (FLD) analysis based on Gabor-wavelet feature vectors to classify 3D objects measured by digital interferometry. Experimental and simulation results are presented for regional filtering concentrated at specific positions, and for overall grid filtering. The proposed technique substantially reduces the dimensionality of the 3D classification problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信