D. Inoue, Jieun Lee, T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, S. Arai
{"title":"薄膜光子集成的对接内置(BJB)结构","authors":"D. Inoue, Jieun Lee, T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, S. Arai","doi":"10.1109/ICIPRM.2013.6562623","DOIUrl":null,"url":null,"abstract":"On-chip optical interconnections have potential for replace global copper wires on LSI chips. I n this work, as an integration method, an OMVPE butt-joint regrowth of 175-nm thick GaInAsP/InP was conducted toward an integration of active and passive components. In the numerical calculation, a coupling efficiency and residual reflection of designed butt-joint coupling were estimated to be 98% and -40 dB, respectively. In the experimental method, we investigated the dependence of butt-joint interface morphology and regrown surface flatness on the side etch depth and the mesa angle. As a result, a flat regrown surface without degradation in crystalline quality was obtained.","PeriodicalId":120297,"journal":{"name":"2013 International Conference on Indium Phosphide and Related Materials (IPRM)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Butt-joint built-in (BJB) structure for membrane photonic integration\",\"authors\":\"D. Inoue, Jieun Lee, T. Shindo, M. Futami, K. Doi, T. Amemiya, N. Nishiyama, S. Arai\",\"doi\":\"10.1109/ICIPRM.2013.6562623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-chip optical interconnections have potential for replace global copper wires on LSI chips. I n this work, as an integration method, an OMVPE butt-joint regrowth of 175-nm thick GaInAsP/InP was conducted toward an integration of active and passive components. In the numerical calculation, a coupling efficiency and residual reflection of designed butt-joint coupling were estimated to be 98% and -40 dB, respectively. In the experimental method, we investigated the dependence of butt-joint interface morphology and regrown surface flatness on the side etch depth and the mesa angle. As a result, a flat regrown surface without degradation in crystalline quality was obtained.\",\"PeriodicalId\":120297,\"journal\":{\"name\":\"2013 International Conference on Indium Phosphide and Related Materials (IPRM)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Indium Phosphide and Related Materials (IPRM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPRM.2013.6562623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Indium Phosphide and Related Materials (IPRM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPRM.2013.6562623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Butt-joint built-in (BJB) structure for membrane photonic integration
On-chip optical interconnections have potential for replace global copper wires on LSI chips. I n this work, as an integration method, an OMVPE butt-joint regrowth of 175-nm thick GaInAsP/InP was conducted toward an integration of active and passive components. In the numerical calculation, a coupling efficiency and residual reflection of designed butt-joint coupling were estimated to be 98% and -40 dB, respectively. In the experimental method, we investigated the dependence of butt-joint interface morphology and regrown surface flatness on the side etch depth and the mesa angle. As a result, a flat regrown surface without degradation in crystalline quality was obtained.