{"title":"基于精英非支配排序的超大规模集成电路平面规划中面积和长度同时最小化的遗传算法","authors":"Pradeep Fernando, S. Katkoori","doi":"10.1109/VLSI.2008.97","DOIUrl":null,"url":null,"abstract":"VLSI floor-planning in the gigascale era must deal with multiple objectives including wiring congestion, performance and reliability. Genetic algorithms lend themselves naturally to multi-objective optimization. In this paper, a multi-objective genetic algorithm is proposed for floorplanning that simultaneously minimizes area and total wirelength. The proposed genetic floorplanner is the first to use non-domination concepts to rank solutions. Two novel crossover operators are presented that build floorplans using good sub-floorplans. The efficiency of the proposed approach is illustrated by the 18% wirelength savings and 4.6% area savings obtained for the GSRC benchmarks and 26% wirelength savings for the MCNC benchmarks for a marginal 1.3% increase in area when compared to previous floorplanners that perform simultaneous area and wirelength minimization.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":"92 S84","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"An Elitist Non-Dominated Sorting Based Genetic Algorithm for Simultaneous Area and Wirelength Minimization in VLSI Floorplanning\",\"authors\":\"Pradeep Fernando, S. Katkoori\",\"doi\":\"10.1109/VLSI.2008.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"VLSI floor-planning in the gigascale era must deal with multiple objectives including wiring congestion, performance and reliability. Genetic algorithms lend themselves naturally to multi-objective optimization. In this paper, a multi-objective genetic algorithm is proposed for floorplanning that simultaneously minimizes area and total wirelength. The proposed genetic floorplanner is the first to use non-domination concepts to rank solutions. Two novel crossover operators are presented that build floorplans using good sub-floorplans. The efficiency of the proposed approach is illustrated by the 18% wirelength savings and 4.6% area savings obtained for the GSRC benchmarks and 26% wirelength savings for the MCNC benchmarks for a marginal 1.3% increase in area when compared to previous floorplanners that perform simultaneous area and wirelength minimization.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":\"92 S84\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Elitist Non-Dominated Sorting Based Genetic Algorithm for Simultaneous Area and Wirelength Minimization in VLSI Floorplanning
VLSI floor-planning in the gigascale era must deal with multiple objectives including wiring congestion, performance and reliability. Genetic algorithms lend themselves naturally to multi-objective optimization. In this paper, a multi-objective genetic algorithm is proposed for floorplanning that simultaneously minimizes area and total wirelength. The proposed genetic floorplanner is the first to use non-domination concepts to rank solutions. Two novel crossover operators are presented that build floorplans using good sub-floorplans. The efficiency of the proposed approach is illustrated by the 18% wirelength savings and 4.6% area savings obtained for the GSRC benchmarks and 26% wirelength savings for the MCNC benchmarks for a marginal 1.3% increase in area when compared to previous floorplanners that perform simultaneous area and wirelength minimization.